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Abstract 

 

Over 725 steganography tools are available over the Internet, each providing a method 

for covert transmission of secret messages. This research presents four steganalysis 

advancements that result in an algorithm that identifies the steganalysis tool used to 

embed a secret message in a JPEG image file. The algorithm includes feature generation, 

feature preprocessing, multi-class classification and classifier fusion. The first 

contribution is a new feature generation method which is based on the decomposition of 

discrete cosine transform (DCT) coefficients used in the JPEG image encoder. The 

generated features are better suited to identifying discrepancies in each area of the 

decomposed DCT coefficients. Second, the classification accuracy is further improved 

with the development of a feature ranking technique in the preprocessing stage for the 

kernel Fisher’s discriminant (KFD) and support vector machines (SVM) classifiers in the 

kernel space during the training process. Third, for the KFD and SVM two-class 

classifiers a classification tree is designed from the kernel space to provide a multi-class 

classification solution for both methods. Fourth, by analyzing a set of classifiers, 

signature detectors, and multi-class classification methods a classifier fusion system is 

developed to increase the detection accuracy of identifying the embedding method used 

in generating the steganography images. Based on classifying stego images created from 

research and commercial JPEG steganography techniques, F5, JP Hide, JSteg, Model-

based, Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA embedding 

methods, the performance of the system shows a statistically significant increase in 

classification accuracy of 5%. In addition, this system provides a solution for identifying 

steganographic fingerprints as well as the ability to include future multi-class 

classification tools. 
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MULTI-CLASS CLASSIFICATION FOR IDENTIFYING JPEG 

STEGANOGRAPHY EMBEDDING METHOD 

 

I. Introduction 

 

Steganography plays an important role in information security, i.e., any form of covert 

communication. Literally, the meaning of steganography originated from the ancient 

Greek words is “covered writing” (The Oxford English dictionary, 1933). It puts 

emphasis on perceptual unobservable/undetectable data hiding, i.e., the inability to prove 

that a cover file contains hidden data. In order to hide secret information, three 

components in steganography are the stego message, cover file and embedding method. 

Stego message is the covert message that a sender wishes to remain confidential, such as 

text, picture, audio, etc. A clean file is a file that has not been modified from its original 

characteristics while a cover file/carrier is a file in which a message will be hidden 

within. After using an embedding method, the stego system results in stego/dirty files that 

are digital files containing the hidden information with the cover file and the stego 

message as input, i.e., files have been manipulated by an embedding method by hiding 

information. In the embedding and decoding procedures, a parameter, stego key, shared 

by the sender and the receiver is used to limit the authority of extracting the stego 

message from the stego file.  

 

The classic model for steganography proposed by Simmons (1984) is the prisoners’ 

problem. Figure 1.1 illustrates a scenario of the problem that Alice and Bob are arrested 

for a crime and thrown in two different cells. They want to develop an escape plan, but 

the warden Wendy monitors all communications between the two prisoners. She will not 

let them communicate through encryption and if she notices any suspicious 

communication, she will place them in solitary confinement and thus suppress the 

exchange of all messages. Hence, both parties must communicate invisibly in order to 

avoid arousing Wendy’s suspicion; they have to set up a subliminal channel. A practical 



 

2 

way to do so is to hide meaningful information in some harmless message: Alice could, 

for instance, use a digital photo of an aircraft and send this image to Bob. Wendy has no 

idea that the binary value representation of the image transmits a secret escape plan 

(stego message). After receiving the stego file, Bob reconstructs the message with a key 

he shares with Alice. 

 

 
 

 

Figure 1.1. Prisoner’s Problem, Schematic of the Principles of Steganography. 

 

Contrary to steganography, steganalysis, the main research in this dissertation, is the 

process for identifying a file containing steganography and/or extract the stego message. 

Steganalysis has progressed from the simple case of determining whether an image 

contains hidden information to the more complex problem of extracting the hidden 

information. With over 725 steganography tools available over the Internet (Backbone 

Security, 2008) this is an escalating problem. From a digital forensics standpoint, it is 

important to extract the hidden data. A step in the process for doing this is identifying the 

embedding algorithm used to create the stego file. Stego method identification however, 
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is not trivial with so many tools available. A step towards algorithm identification 

requires determining the class of steganography algorithm used during embedding. This 

identification requires developing a steganalysis system.  

 

This research focuses on building up a multi-class steganalysis system for detecting the 

secret in compressed images. The system includes generating the features from inputs, 

which are the characteristics of the JPEG images. The generated raw features are sent 

through a set of preprocessing steps; feature ranking, feature selection and feature 

extraction, which are used to eliminate redundancies within features. The preprocessed 

features are input to SVM or KFD classifiers using the presented multi-class tree with the 

selected and the fusion of classifiers. The performance of the system is based on the 

classification accuracy on input images, determining clean or stego images of which in 

the following JPEG embedding methods are used: F5, JP Hide, JSteg, Model-based, 

Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA. 

 

In the following section, a background of steganalysis is given which includes the 

definition of steganography, a brief history, comparisons with cryptography and 

watermarking along with a definition of steganalysis. Following this, a section devoted to 

the problem statement for a multi-class classification system is outlined. The problems 

which are encountered in the development of multi-class systems such as the generation 

of features, selection of the best set of features, classification with classifier selection and 

the fusion of multi-class classification methods are also discussed. The methodology 

section gives an overview of the multi-class steganalysis system including the generation 

of features for JPEG images, the multi-class tree structure for classification, selection of 

the most relevant features and the multi-class classification fusion system. The last 

section concludes with the summary of the topics discussed within this chapter. 
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1.1 Background 

 

In this section steganography, one of the information hiding techniques, is defined with 

respect to current multimedia formats. A brief history of steganography (Kahn, 1996) is 

given beginning with ancient Greece (Littlebury, 1737a; 1737b; Rawlinson, 1862; 1875; 

1880; 1889) to the current classical model. In addition, a comparison is made between 

steganography, cryptography and watermarking, which are the other data hiding 

techniques, followed by a definition of steganalysis.  

 

1.1.1 Introduction to Steganography 

 

Communication systems have long been used to send and receive secret messages. In 

many of these systems the messages may be transmitted through public communication 

channels either open to be viewed or concealed from an outside observer. Stego messages 

are the ones that have been hidden within innocent looking cover files creating a stego 

file. Even though data hiding terminology is fairly modern due to the popularity of 

multimedia, the roots of steganography can be traced back to ancient Greece (Littlebury, 

1737a; 1737b; Rawlinson, 1862; 1875; 1880; 1889).  A history of steganography was 

written by Kahn (1996) providing specific steganography events. Herodotus, the father of 

history, gives several cases (Littlebury, 1737a; 1737b; Rawlinson, 1862; 1875; 1880; 

1889). A man named Harpagus wanted to send a secret message so he killed a hare and 

hid a message inside its body. He sent it with a messenger who pretended to be a hunter 

(Littlebury, 1737a, pp. 80-81; Rawlinson, 1889, pp. 201). In another instance (Littlebury, 

1737a, pp. 19; Rawlinson, 1862, pp. 197), Histaieus wished to inform his friends that it 

was time to begin a revolt against the Medes and the Persians. He shaved the head of one 

of his trusted slaves, tattooed the message on the head, waited till his hair grew back, and 

sent him along. It worked; the message successfully reached his intended recipients in 

Persia and the revolt succeeded. Things worked more slowly in the days before faxes, e-

mail and the Internet. Herodotus also tells of a man named Demeratus who wanted to 
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report from the Persian court back to his friends in Greece that Xerxes the Great was 

about to invade Greece (Littlebury, 1737b, pp. 278-279; Rawlinson, 1880, pp. 187). 

Messages in those days were sent via writing tablets made of two pieces of wood, hinged 

as a book, with each face covered with wax. One wrote on the wax; the recipient melted 

the wax and reused the tablet. Demeratus removed the wax of the tablet, concealed a 

message on the wood itself and recovered the tablet with wax. He then sent the 

apparently blank tablets to Greece. At first nobody could figure out what they meant. 

Then a woman named Gorgo guessed that maybe the wax was concealing something. She 

removed it and became the first woman cryptanalyst (Kahn, 1996). Unfortunately, her 

ingenuity had fatal consequences for her husband Leonidas, the king of Sparta; he died 

with band of Greeks holding off the Persians at Thermopylae (Littlebury, 1737, pp. 270-

271; Rawlinson, 1880, pp. 178). 

 

1.1.2 Difference between Steganography and Cryptography 

 

An alternative method to steganography in secure communication is cryptography. An 

important point to note is that both steganography and cryptography provide secure 

communications and may be used concurrently. Steganography and cryptography  differ 

in execution. In cryptography, the secret message which is the transmitted file itself 

cannot be recovered without the secret key; however, the encrypted file is identified as 

being sent. It helps to protect confidentiality but protection vanishes after decryption. In 

steganography the existence of the stego message is concealed in a cover file in a way 

that does not allow an enemy to observe that there is a message present (Petitcolas et al., 

1999). The stego message can be extracted with stego key as long as the stego file is 

identified by which embedding method is used.  

 

 

 



 

6 

1.1.3 Differences between Steganography and Watermarking 

 

Except for steganography, watermarking has been the other data hiding technique broadly 

used for authentication. Both of them share many common rules but the objectives for 

these techniques are different. In watermarking, the important information is the cover 

media. The embedded data is inserted solely for the protection of the cover media. In 

steganography, the cover media is not important. It typically serves as a diversion from 

the embedded data. Steganographic communications are usually between a sender and 

single receiver while watermarking techniques are usually between a sender and many 

receivers (Katzenbeisser and Petitcolas, 2000). Digital watermarking may be thought of 

as a commercial application of steganography, being used to trace, identify and locate 

digital media across networks (Johnson and Jajodia, 1998A; 1998B). The 

encoding/decoding part of steganographic systems is similar to watermarking. However, 

steganography has reduced robustness requirements allowing a higher embedding rate.  

 

1.1.4 Steganalysis 

 

Steganalysis is the science of detecting hidden information within a cover file, i.e., to 

identify a file as containing stego and/or extract the stego message. An investigator using 

steganalysis techniques is known as a steganalyst, such as Wendy in the prisoner’s 

problem. Steganalysis is a relatively young research discipline with few articles 

appearing before the late-1990s (Kessler, 2004). The science of steganalysis was initially 

intended to detect or estimate the existence of stego information based on observing some 

data transfer, while having no assumptions of the steganography algorithm applied 

(Chandramouli, 2002). In digital image steganalysis an analyst has three goals, first 

determine if an embedded message exists, next determine the embedding method used to 

create the stego image, and finally extract the hidden message. This research focuses on 

the second goal, that is, to identify the embedding technique used to create the 

steganography image. Several detection systems currently exist, so the identification 
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problem becomes one of determining which detection system has correctly identified the 

embedding method. Most steganalysis today is signature-based, similar to anti-virus and 

intrusion detection systems. In this type of application, the known embedding algorithms 

provide fingerprints that are added to a steganographic fingerprint database in which the 

analyst creates a message and uses a known stego tool to create a stego file. This known 

stego file is then analyzed to determine patterns for later use against other stego files 

(Silman, 2001). Steganography detection and extraction is generally sufficient if the 

purpose is evidently gathering related to a past crime. Although, disable the hidden 

message so that the recipient cannot extract it and/or alter the hidden message to send 

misinformation to the recipient might also be legitimate law enforcement goals during an 

on-going investigation of criminal or terrorist groups (Jackson, 2003). The law 

enforcement community does not always have the luxury of knowing when and where 

steganography has been used or the algorithm that has been employed. Generic detection 

tools generated from emerging research capable of detecting and classifying 

steganography are becoming available, including research prototypes (Fridrich, 2004; 

Lyu and Farid, 2004; Shi et al., 2005; Pevny and Fridrich, 2007; Rodriguez and Peterson, 

2007; Wang and Moulin, 2007) and commercially-available tools (e.g., ILook 

Investigator, Inforenz Forager, StegalyzerSS, SecureStego, StegDetect (Provos, 2004) 

and WetStone’s Stego Suite). 

 

The following definitions were introduced by Johnson and Jajodia (1998B) and are 

frequently used by the steganalysis community:  

 Stego-only attack: The stego file is the only item available for analysis. 

 Known cover attack: The cover and stego file are both available for analysis. 

 Known message attack: The hidden message is known. 

 Chosen stego attack: The stego file and tool are both known. 

 Chosen stego message attack: The steganalyst generates stego files from a known 

steganography tool using a chosen stego message.  

 Known stego attack: The cover file, stego file and stego tool are known. 
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1.2 Problem Statement 

 

There is an estimated 725 steganography methods available on the Internet with the 

majority being used for hiding messages in digital images (Backbone Security, 2008). 

Several are downloadable for free and have user friendly graphical user interfaces (GUIs) 

(Higgins, 2007). While these tools have been used to hide various forms of information 

for privacy, these tools have also been used for criminal activity and malicious intent. 

Documented examples of this have occurred, including an incident involving an engineer 

sending an email with two attached images that turned out to be a set of stego files 

containing intellectual property (Radcliff, 2002). Other crimes involving the use of 

steganography include child pornography where the stego files are used to hide a 

predator’s location when posting digital pictures on Web sites or sending them through 

email (Astrowsky, 2000). Steganography may also be used to allow communication 

between affiliates of an underground community, such as terrorist organizations (Kelley, 

2001). To combat these image stego tools, an initial step requires determining if an 

observed image contains a stego message. If an image is identified as being a stego file, 

the second step is determining the embedding method. This step of identifying the 

steganography method enables the steganalyst to then target the steganography method 

and extract the hidden information in a final step.  

 

Identifying the tool used to create the stego image will help in the extraction process of 

removing the hidden message. Therefore, a system must be designed to identify which 

stego tool is used. Several factors must be addressed in the steganalysis multi-class 

classification system including feature generation, feature improvement, classifier 

selection and fusion as shown in Figure 1.2.  

 



 

9 

 
Figure 1.2. Steganalysis Classification System in Training Stage.  

 

As in the training stage, given clean and steganographic image datasets, the system with 

all these procedures is trained to find out the suitable parameters used for classification. 

The trained classification model as the output in this stage contains parameters for feature 

improvement, the classifier parameters, and parameters for classifier fusion. Once the 

model is set, the testing stage in Figure 1.3 indicates the output of the model is which 

stego method is used, either none, F5, JP Hide, JSteg, Model-based, Model-based 

Version 1.2, OutGuess, Steganos, StegHide and UTSA. 

 

Several detection systems are available from research tools (Lyu and Farid 2002; 2004; 

Fridrich, 2004; Lie and Lin, 2005; Shi et al., 2005; Xuan et al., 2005; Fu et al., 2006; 

Pevny and Fridrich, 2006; 2007; Rodriguez and Peterson, 2007; Wang and Moulin, 2007) 
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to commercially available systems (ILook Investigator © toolsets, Inforenz Forager®, 

SecureStego (Air Force Research Laboratory, Rome, NY), StegDetect (Provos, 2004), 

WetStone Stego Suite™). Each of the available systems has certain advantages over each 

other. A steganalyst should use as many of these tools as possible when analyzing a set of 

images. A problem arises when each detection system used potentially returns different 

class labels representing different embedding techniques. In the event each of the 

detection systems identifies a different stego tool, the analyst must then properly 

determine the correct method from the different set of identified stego labels. The 

solution described in this research fuses the results of each detection systems to get better 

detection accuracy and alleviate the steganalyst from having to make this assessment. 

The remainder of this section introduces the basic concept of feature generation, feature 

improvement, classifier selection, multi-class classification and the fusion of classifier 

systems.   

 

1.2.1 Feature Generation 

 

The basic concept of generating features is to transform a given image, which contains an 

extensive number of data values in a two dimensional matrix, into a new set of features. 

If the transform is suitably chosen the transform domain features can exhibit high 

information properties about the original input image in a compact vector form. This 

means that most of the classification related information is compressed in a relatively 

small number of values leading to a reduced feature space (Theodoridis and 

Koutroumbas, 2006). For example, consider a grayscale image that is of 512×512 pixels. 

This image would contain 262,144 pixel values, mapping the image into a new domain 

with the use of a transfer function can potentially represent the image with a significantly 

smaller number of values. The basic reasoning behind transform-based features is that an 

appropriate chosen transform can exploit and remove redundancies that usually exist in 

digital images (Theodoridis and Koutroumbas, 2006). Consider the problem of 

steganalysis, an input image that has been manipulated by an embedding method will 
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contain changes that are not visible to the human eye. In the case of JPEG images a 

compression technique is used which is based on the discrete cosine transform (DCT). 

Generating features for discriminating between a clean image (an original cover file) and 

a stego image (stego file) using the DCT will eliminate redundant pixel information. 

When generating features derived from calculating the DCT, most of the energy lies in 

the frequency bands of the coefficients providing important information for class 

discrimination. This however leads to a large number of features, which for classification 

accuracy must be reduced. 

 

1.2.2 Feature Improvement 

 

With the raw features, feature improving before classification is vital. The goal for 

improving the input features is to select a subset of feature and/or extract the most 

feasible features able to categorize the inputs.  

 

Feature Ranking and Selection - The major task in feature selection, given a large 

number of features, is to select the most important features and reduce the dimensionality 

while retaining class discriminatory information. This procedure is important when 

determining which features are to be used to train the classification model. If features 

with little discrimination power are selected the subsequent classification model will lead 

to poor classification performance. On the other hand, if information rich features are 

selected the design of the classifier can be greatly simplified. In a more quantitative 

description, feature selection leads to large between-class distances and small within-

class distances in the feature space. That is, features should separate different classes by a 

large distance, and should have small distance values between objects in the same class. 

Several methods are available to identify individual features with linear separation, a few 

ranking and selection methods include; divergence measure (Fukunaga, 1990; 

Theodoridis and Koutroumbas, 2006), Bhattacharyya distance (Bhattacharyya, 1943; 

Fukunaga, 1990) and Fisher’s linear discriminant ratio (Fisher, 1936; 1943; Dillon and 
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Goldstein, 1984; Fukunaga, 1990; van der Heijden et al., 2004; Bishop, 1995, 2006; 

Theodoridis and Koutroumbas, 2006).  

 

When measuring nonlinear class separability, care must be taken when using feature 

ranking methods. Ranking methods developed for specific classifiers are often best suited 

for determining the best set of ranked features. For neural network classifiers features are 

ranking and selected based on a saliency metric (Ruck et al., 1990; Belue and Bauer, 

1995) and signal-to-noise ratio (Bauer et al., 2000). For kernel based classifiers, such as 

kernel Fisher’s discriminant and support vector machines, method-specific techniques are 

best suited for ranking. These techniques include recursive feature elimination (Guyon et 

al., 2002; Guyon, 2007), zero-norm feature ranking (Weston et al., 2003), gradient 

calculations using recursive feature elimination (Rakotomamonjy, 2003), and kernel 

Fisher’s discriminant using recursive feature elimination (Louw and Steel, 2006).  

 

Feature Extraction - Another approach to reducing the dimension of the input features 

is to use a transformed space instead of the original feature space. For example using a 

transformation φ(⋅) that maps the data points x of the input space, n, into a reduced 

dimensional space p, where n > p, creates features in a new space that may have better 

discriminatory properties. Classification is based on the new feature space rather than the 

input feature space. The advantage of feature extraction over feature selection is that no 

information from any of the elements of the measurement vector is removed. In some 

situations feature extraction is easier than feature selection. A disadvantage of feature 

extraction is that it requires the determination of a suitable transformation φ(⋅). Some 

methods include principal component analysis (Hotelling, 1933; Dillon and Goldstein, 

1984) and kernel principal component analysis (Scholkopf et al., 1998; Bishop, 2006). If 

the transformation chosen is too complex, the ability to generalize from a small data set 

will be poor. On the other hand, if the transformation chosen is too simple, it may 

constrain the decision boundaries to a form that is inappropriate to discriminate between 
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classes. Another disadvantage is that all features are used, even if some of them have 

noise like characteristics. This might be unnecessarily expensive in term of computation 

(van der Heijden et al., 2004). It should be noted that the transformation used for the 

input features in the training of the classification model should also be used for the 

testing features.  

 

1.2.3 Classification 

 

Given an input sample the training of a classification model may consist of supervised or 

unsupervised learning. In supervised learning the input sample includes an identification 

of its class membership. In unsupervised learning the class of the input sample is not 

known (Jain et al., 2000). This research concentrates on supervised learning. Supervised 

learning can be further broken down into subcategories of classification models. These 

models include but not limited to the following classifier types (Duda and Hart, 1973; 

Fukunaga, 1990; Theodoridis and Koutroumbas, 2006);  

 Classifiers based on Bayes decision theory include; Bayesian networks, 

discriminant functions, and mixture models, specifically, expectation 

maximization. Linear classifiers include; Bayes linear classifier, Fisher’s linear 

discriminant, and the perceptron algorithm. 

 Nonlinear classifiers include; decision trees, kernel Fisher’s discriminant, multi-

layer perceptron, radial basis neural networks, and nonlinear support vector 

machines. 

 Nonparametric classifiers include; locally weighted regression, and Parzen 

window. 

 These classifiers are predominantly two-class classifiers while some can be either two-

class or multi-class classifiers. In this research the concentration is on multi-class 

classification. The specific problem addressed is how to design discriminant functions 

which are able to separate more than two classes (Duda and Hart, 1973; Platt et al., 2000; 

Schwenker, 2000; Tax and Duin, 2002; Rifkin and Klautau, 2004; Eibl and Pfeiffer, 
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2005; Wang and Casasent, 2005; Liu and Zheng, 2005; Bishop, 2006; Middelmann et al., 

2006; Theodoridis and Koutroumbas, 2006; Yang et al., 2006).  

 

1.2.4 Classifier Fusion 

 

As noted, there is a large pool of different classifiers. In the literature, classifier fusion 

has been proposed for improving classification performance by exploiting the individual 

advantages of each of the classifiers (Woods et al., 1997; Duin and Tax, 2000; Ruta and 

Gabrys, 2001; Shipp and Kuncheva, 2002; Jaeger, 2004; Kuncheva, 2004; Leap et al., 

2004; Theodoridis and Koutroumbas, 2006). The success of classifier fusion depends on 

two factors defined by Goebel and Yan (2004); first, the proper selection of a pool of 

diverse individual classifiers to be fused, and second, the proper method of fusing 

individual classifiers. A third factor should also be considered, that is the subspace of the 

classifiers being fused. Identifying the appropriate classifier for a particular problem is 

not trivial. Selecting the single best performing classifier on the training data and 

applying it to the testing data is the easiest method. While this approach is the simplest 

the most advantageous performance may not be guaranteed. An increase of performance 

can possibly be obtained by increasing the available dataset. When this is not an option, 

the most reliable strategy is to evaluate as many different classifier designs as possible 

and subsequently select the best performing model. The difficulty is that such a wide 

evaluation is computationally complex. In relation to classifier fusion, selection identifies 

the answers to which classifier and how many classifiers to select in order to obtain an 

increased performance. In certain situations, a problem arises when the outputs of the 

individual classifiers are of different types, either discrete values or posterior 

probabilities. Hence, the proper classifier fusion technique has to be used for a specific 

problem. 
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1.3 Methodology 

 

The following sections describe the multi-class JPEG image steganalysis system. Each 

subsection introduces the main advancements this research provides in the area of 

steganalysis, specifically, feature generation, feature selection, classifier selection, and 

multi-class classifier fusion.  

 

1.3.1 DCT Feature Generation 

 

This section describes the novel JPEG steganalysis feature generation method used in the 

classification system. In this method the DCT coefficients are separated into vertical, 

diagonal and horizontal orientation as well as low, medium and high frequencies. This is 

known as DCT decomposition (Rao and Yip, 1990). Each of the 8×8 blocks is divided 

into nine DCT decompositions represented by both the frequency distributions and 

directions. The coefficients of interest are within the vertical, diagonal and horizontal 

orientation of the low and medium frequency bands. The predictors are used to estimate 

modifications made to an image by an embedding method. In this research four different 

predictor methods are used. The first is a distance measure in which the distance between 

neighboring coefficients is calculated and averaged. The second method used to calculate 

the predictors is a least squares linear regression technique on the DCT neighboring 

coefficients for JPEG images originally proposed by Farid (2002). In the final method the 

predictors are calculated by shifting the 8×8 blocks by one pixel in the spatial domain 

followed by recompressing the pixels using the JPEG properties. To measure the 

coefficients, neighboring coefficients and shifted coefficients, 180 features are generated 

from higher-order statistics that aid in the assessment of changes made to the image by an 

embedding method. As more features are created, the problem becomes one of relevancy 

to the actual classification problem. 
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1.3.2 Feature Improvement  

 

The feature ranking/selection method used for improving identification accuracy is 

designed for two kernel based classifiers, the kernel Fisher’s discriminant (KFD) and the 

support vector machines (SVM). The benefit of this feature selection method is that the 

classification algorithms being used assists in discriminating between important features 

and noise features by ranking features in the kernel space. The ranking method consists 

of; first, removing one feature at a time from the input space and transforming the 

remaining features into the kernel space, second, identifying the alpha vectors and 

support vectors, and third, assigning a ranking value to the removed feature using the 

alpha vectors and support vectors with a new derived ranking measure. The selection is 

based on the percentage of features necessary to increase classification performance, and 

is termed SVM-Kernel Feature Ranking (SVM-KFR). This however, does not resolve the 

need to discriminate between several classes. 

 

1.3.3 Classification 

 

For detecting stego messages in various embedding methods, a fusion of classifiers is 

used to increase classification accuracy. Prior to the fusion process, the selection of 

classifiers is vital. One approach is to first heuristically pick a number and types of 

classifiers while ensuring a diverse output. Another approach is choosing classifiers from 

a large pool to achieve classification performance as close to an error rate of zero as 

possible. This should be accomplished while avoiding the exhaustive evaluation of all 

possible classifier combinations. The classifiers are multi-class classifiers, including 

Bayes decision theory method and expectation maximization (EM); the nonlinear 

classifier probabilistic neural network (PNN); and nonparametric classifiers, k-nearest 

neighbors and Parzen windows. Two nonlinear kernel based methods are also used, the 

support vector machine (SVM) and kernel Fisher’s discriminant (KFD). These two 

methods however are two-class classifiers. In this methodology, the focus is to solve 
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multi-class classification for identifying various stego embedding methods. In order to 

solve the KFD and SVM two-class problem, a new multi-class classification tree is 

designed specifically for the KFD and SVM where two-class classifiers reside at each 

node of the tree. This tree is designed by separating classes into two groups at each node. 

The classes are grouped according to the smallest distances between classes. This tree is 

gradually expanded by adding a node each time a set of two or more classes is identified. 

The smallest distance between a set of classes represents a low value in classification 

accuracy. The distance measure is based on the kernel transform.  

 

1.3.4 Classifier Fusion 

 

The output labels of the multi-class classifiers expectation maximization (EM), k-nearest 

neighbors (k-NN), Parzen window and probabilistic neural networks along with the 

output labels of the new KFD and SVM multi-class classifiers are fused to increase 

classification accuracy. Along with the six multi-class detection systems two commercial 

tools, StegAlyzerSS and StegoSuite, are also fused. In this work, the individual detection 

systems are fused using three fusion methods; the first method used for fusion is 

boosting, specifically AdaBoost (Freund and Schapire, 1995); the second method is 

Bayesian networks for model averaging (Murphy, 2001); the final method is probabilistic 

neural networks.  

 

1.3.5 Results 

 

The simulation of the methodology is done by 5-fold cross validation having both 

training and testing. With feature preprocessing, an average increase in classification 

accuracy is achieved for the individual multi-class classifiers, EM, k-nearest neighbors, 

Parzen window, PNN by as much as 22% in comparison to no features preprocessing. A 

multi-class classification system for KFD and SVM is created by using a multi-class tree. 

With the use of the tree structure the classification accuracy of this new system by 
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applying the feature preprocessing in the individual nodes, an increase in classification 

accuracy is achieved by 10% than without feature preprocessing. With the use of the 

classifier fusion, the overall accuracy by 5% over the best individual best classifier is 

attained. Furthermore, the performance of the methodology shows statistical difference 

between the newly fused system in comparison to the individual detection systems. 

 

1.4 Summary 

 

This chapter defined steganography, provided its brief history and how steganography is 

used with current multimedia formats was given. A definition of steganalysis was also 

given followed by a section devoted to the problem statement for a multi-class 

classification system. The specific problems encountered in the development of multi-

class systems in this chapter are generation of features, selection of the best set of 

features, classification selection and the fusion of multi-class classification methods. The 

methodology for this research was introduced in Section 1.3 which included the 

generation of features for identifying JPEG stego and clean images, selection of the most 

relevant features, the design of a multi-class classification system for both KFD and SVM 

and the fusion of multi-class classifiers. 

 

Chapter 2 provides the necessary background and literature review in solving the 

complex problem of identifying the embedding method used. In Chapter 3, the 

methodology is described in detail in which the full detection system is developed. This 

involves the generation of features, the ranking and selection of features, the design of the 

classification tree and the fusion of classifiers to solve the multi-class problem. In 

Chapter 4, the results are based on a twelve class dataset which contains a set of clean 

images (one class) and steganography images (seven classes). The embedding methods 

targeted in this paper are F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), JSteg 

(Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 (Sallee, 

2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and UTSA 
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(Agaian et al., 2006). The classification results are provided from EM, k-nearest 

neighbors, Parzen Window and probabilistic neural networks multi-class classifiers, new 

multi-class tree with KFD and SVM, commercial tool and fusion of all the multi-class 

systems. The results also show the classification of the embedding methods with the new 

feature generation methods compared with the wavelet based features (Lyu and Farid 

2002) and the DCT based features (Pevny and Fridrich, 2007). These results show four 

techniques that improve classification accuracy; first, the new feature generation method, 

second, the multi-class tree allows the KFD and SVM to be used as multi-class classifier, 

third, the selection of features at each node for the KFD and SVM classifiers, and the 

final technique is the fusion of the various classifiers. Finally, Chapter 5 provides a 

conclusion, contribution to DoD and future directions that may be considered in 

expanding the steganalysis multi-class system.  
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II. Literature Review 

 

This chapter presents related work relevant to the development of a steganalysis system. 

There are several sub-components to this research, including JPEG image representation, 

feature generation, feature preprocessing, feature extraction, feature selection, 

classification, multi-class classification and classifier fusion. Figure 2.1 shows the basic 

structure of the detection system and its primary components discussed in this chapter.  

 

 
Figure 2.1. Basic Detection System. 
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Related work on each of these topics is presented in this order in the following sections. 

 Image Representation: The JPEG image format is described along with a basic 

description of the areas within a JPEG image that are manipulated by an 

embedding method. 

 Feature Generation: Using statistical measures to identify changes made to a 

JPEG image by an embedding method, two transform based methods in this 

chapter generate one dimensional feature vectors from a matrix image 

representation. 

 Feature Extraction: The methods in this chapter map a set of feature vectors to a 

lower dimensional space. 

 Feature Ranking/Selection: A subset of features is chosen according to feature 

ranking, noise features and class separability (means and variances). 

 Classification: Six classification methods are described, i.e., expectation 

maximization, k-nearest neighbors, kernel Fisher’s discriminant, Parzen window 

probabilistic neural networks and support vector machines.  

 Multi-class Classification: The multi-class methods include true multi-class 

classifiers and the combination of two-class classifiers. 

 Classifier Fusion: Three fusion methods are described; AdaBoost (Freund and 

Schapire, 1995), Bayesian networks for model averaging (Murphy, 2001) and 

probabilistic neural networks. 

 

2.1 JPEG Image Representation Background 

 

In this section, the basic structure of the JPEG image format and the steps in the 

compression process are described. This is followed by a brief introduction of JPEG 

image embedding methods.  

 

The Joint Photographic Experts Group (JPEG) format uses lossy compression to achieve 

high levels of compression on images with many colors (Elysium Ltd., 2004). JPEG is 
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an international standard for still image compression, and is widely used for 

compressing gray scale and color images. JPEG images are commonly used for storing 

digital photos, and publishing Web graphics; tasks for which slight reductions in the 

image quality are barely noticeable. Due to the loss of quality during the compression 

process, JPEGs should be used only where image file size is important (Murry and 

vanRyper, 1994; Brown and Shepherd, 1995). 

 

The JPEG encoder, shown in Figure 2.2, performs compression with the following 

sequential steps: image preprocessing (divides the input image into 8×8 blocks), forward 

DCT of each 8×8 block, quantization with scaling factor, separation of DC and AC 

coefficients, prediction of the DC coefficient and zig-zag scan the AC coefficients and 

Huffman encoder (there is a separate encoder for the DC and AC coefficients).   

 

 

Figure 2.2. Block Diagrams of Sequential JPEG Encoder. 

 

In JPEG decoding, all steps from the encoding process are reversed. The following 
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Preprocessing block - Subdivides the image into blocks of  8×8 pixels and level-shift the 

original pixel values from the range [0, 225] to the range [-128,+127] by subtracting 128. 

The shifting procedure is a preprocessing step for the DCT calculation. 

 

Forward DCT block - Perform a two dimensional discrete cosine transform (DCT) on 

each level-shifted block B from the Preprocessing block step. The two dimension DCT is 

defined as  
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     (2.1) 

 

where 1 10 1n N≤ ≤ −  and 2 20 1n N≤ ≤ − . In the JPEG encoding process, N1 = N2 = 8. 

The transform is performed on the two dimensional matrix B as CBCT. 
 

The transform helps to remove data redundancy by mapping data from a spatial domain 

to the frequency domain. No compression has been achieved in this stage, but by 

changing representation of the information contained in the image block it makes the data 

more suitable for compression.  

 

Quantization - Quantize the DCT coefficients block obtained from the previous step 

using the quantization table Q. The quantization table is a matrix used to divide the 

transformed block for compression purpose by reducing the amplitude of the DCT 

coefficient values and increasing the number of zero valued coefficients. The Huffman 

encoder takes advantage of these quantized values. When Qs is represented the value s is 

a scalar multiple, called the scale (or quality) factor, which defines the amount of 

compression within the image. Higher values of s yield higher compression. Figure 2.3 

shows an instance of Qs. 
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Figure 2.3. Typical quantization matrix. 

 

A set of four quantization tables are specified by the JPEG standard (Independent JPEG 

Group, 1998). After quantization, most of the DCT coefficients in the 8×8 blocks are 

truncated to zero values. It is the principal of lossiness in the JPEG transform-based 

encoder. 

 

DC Coefficient Coding - The first coefficient, coefficient 1 (upper left) in Figure 2.4 b) 

is called the “DC coefficient”, short for the direct current coefficient, and represents the 

average brightness (intensity) of the component block. To encode the DC coefficient, the 

JPEG standard utilizes a Huffman difference code table that categorizes the value 

according to the number of k bits that are required to represent its magnitude. The value 

of the element is encoded with k bits. 
 

AC Coefficients Coding - The remaining 63 coefficients are the “AC coefficients”, short 

for the alternating current coefficients. The Huffman code assigns short (binary) 

codewords to each AC coefficient. The AC coefficient encoding scheme is slightly more 

elaborate than the one for the DC coefficient. For each AC array, a run-length of 0 

elements is recorded. When encountering a non-zero element, the length of 0s is recorded 

and the number of k bits to represent the magnitude of the element is determined. The 
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run-length and k bits are used as a category in the JPEG default Huffman table for 

assigning a code.  

 

Using a zig-zag run encoder converts the 8×8 array of DCT coefficients into a column 

vector of length k (zig-zag goes from left to right and top to bottom). The “zig-zag” scan 

attempts to trace the DCT coefficients according to their significance, shown in Figure 2. 

4. 
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a)                                                                          b) 

Figure 2.4. DCT decomposition zig-zag structure for an 8×8 block, a) zig-zag pattern b) 

coefficient ordering sequence 

 

The Huffman encoding reduces the number of bits needed to store each of the 64 integer 

coefficients. For example, when a true color uncompressed image of size 512×512 pixels 

is stored the file size is 769 kilobytes. However, this same image store as a JPEG at a 

quality factor of 75, the image is stored in 200 kilobytes or smaller. The Huffman 

encoding tables for the DC and AC coefficients can be found in Gonzalez and Woods 

(1992, 2002, 2007), Elysium Ltd. (2004), Independent JPEG Group (1998), and JPEG 

(1994). 

 

One of the primary reasons using image embedding methods for creating stego files is 

due to the number of redundant portions within a digital image. The vast number of JPEG 
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images on the Internet makes them ideal cover images for hiding secrete data and 

transmitting them as stego images. In JPEG steganography, the stego message is 

converted to binary values and embedded into DC and AC coefficients prior to Huffman 

encoding. By embedding at this stage, the stego message can be extracted without losing 

the message. The embedding methods range from simple embedding techniques that alter 

the least significant bits (LSB) of the coefficients such as JP Hide (Latham, 1999) and 

JSteg (Upham, 1993) to more complicated embedding techniques that maintain natural 

histograms of the coefficients such as; F5 (Westfeld, 2001; 2003), JP Hide (Latham, 

1999), JSteg (Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 

(Sallee, 2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and 

UTSA (Agaian et al., 2006). The six tools selected provide a set of embedding methods 

that differ in embedding strategy. Investigation of these methods has provided an insight 

into six different and unique embedding capacities, embedding patterns and the 

appearance of the individual feature spaces. Another reason for selecting these particular 

tools is in previous research and existing steganalysis tools, these 6 embedding methods 

have been used for analysis (Provos and Honeyman, 2003; Lyu and Farid, 2004; Kharrazi 

et al., 2005; Shi et al., 2005; Xuan et al., 2005; Fu et al., 2006; Pevny and Fridrich, 2007). 

 

In summary, a useful property of JPEG is that the degree of lossiness can be varied by 

adjusting the quality factor s (scale of the quantization table), shown in Figure 2.3. The 

ease of file sharing with JPEG images and its popularity over the internet has made JPEG 

image format a desirable cover file for many stego methods. Each embedding method 

leaves a signature that can be identified by various statistical measures. The next section 

describes feature generations methods used to identify changes made to a JPEG image.  

 

2.2 Feature Generation for JPEG Images 

 

Several steganalysis feature generation methods used to identify changes made to a JPEG 

image have been published (Lie and Lin, 2005; Shi et al., 2005; Xuan et al., 2005; Fu et 
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al., 2006; Wang and Moulin, 2007). In this section two well known methods are 

discussed. The first method developed by Lyu and Farid (2002; 2004) is a wavelet based 

method in which features are generated from the wavelet coefficient using various 

statistics. The second method is a DCT based feature generation method in which the 

features are developed with the use of functions for the difference between DCT 

coefficients of input image and of the predicted image (Fridrich, 2004; Pevny and 

Fridrich, 2006).  

 

The JPEG image coefficients are extracted using a transform, i.e., DCT or wavelet 

transform, where the wavelet is calculated over the spatial domain not the transform 

domain. These coefficients represent the image characteristics in a raw format, e.g., low, 

mid and high frequencies for the DCT and vertical, horizontal and diagonal for the 

wavelet transforms. The predictors which are the estimates of where the stego message is 

hidden within an image are based on the feature generation method. Lyu and Farid (2002, 

2004) use a regression technique to develop the weights associated with the coefficients 

to produce the predictors. Fridrich (2004) crops an input image and re-expands the image 

to develop the predictors. The features are finally generated by calculating statistics from 

the coefficients and the predictors.  

 

2.2.1 Wavelet Statistical Model  

 

The image decomposition employed here is based on separable quadrature mirror filters 

(Lyu and Farid, 2002, 2004). In digital signal processing, a quadrature mirror filter is a 

filter bank which splits an input signal into two bands, low-pass and high-pass 

frequencies. The low-pass and high-pass filters are related by the following equation: 

 

( )
2

2ˆ ˆ 1
2

h h πξ ξ⎛ ⎞+ + =⎜ ⎟
⎝ ⎠                                              

(2.2)
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where ξ is the frequency, and the sampling rate is normalized to 2π, as shown in Figure 

2.5.  

 

 
Figure 2.5. Low-pass and high-pass quadrature mirror filter frequency. 

 

Orthogonal wavelets such as the Haar wavelets and related Daubechies wavelets are 

generated by scaling functions which, with the wavelet, satisfy a quadrature mirror filter 

relationship (Addison, 2002; Gonzalez and Woods, 2004). Farid (2002) uses a variety of 

wavelets but in this related work the symmetric quadrature mirror filters (Simoncelli and 

Adelson, 1990) are used. A wavelet is a mathematical function used to divide a given 

function into different frequency components and study each component with a 

resolution that matches its scale. A wavelet transform is the representation of a function 

by wavelets. The wavelets are scaled and translated copies (known as daughter wavelets) 

of a finite-length or fast-decaying oscillating waveform (known as the mother wavelet). 

Wavelet transforms have advantages over traditional Fourier transforms for representing 

functions that have discontinuities and sharp peaks (Gonzalez and Woods, 2002; 

Addison, 2002). 

 

0
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The following explanation of the feature generation method is from Lyu and Farid (2002, 

2004). The mapping from the spatial domain to the wavelet transform domain, f(x,y) → 

V(x, y), H(x, y), and D(x, y) is a decomposition that splits the frequency space into 

multiple orientations and scales. For a grayscale image, the vertical, horizontal and 

diagonal subbands at scale i are denoted as Vi(x, y), Hi(x, y), and Di(x, y), respectively. In 

Figure 2.6b, i is equal to 1 for the first level wavelet decomposition and the second level 

decomposition is represented in Figure 2.6c. For a color (RGB) image, the decomposition 

is applied independently to each color channel. The resulting subbands are denoted as 

Vi
c(x, y), Hi

c(x, y), and Di
c(x; y), where c ∈ {r, g, b}. 

 

   
                         a)                                               b)                                             c) 

Figure 2.6. Wavelet Structure a) Simple image with vertical, horizontal and diagonal 

lines b) 2 level wavelet decomposed c) 3 level wavelet decomposition. 
 

Given the decomposed image, the statistical model is composed of the mean μ, variance 

σ2, skewness γ1 and kurtosis γ2 of the subband coefficients at each orientation, scale and 

color channel. In order to capture higher-order statistical correlations, a second set of 

statistics are collected that are based on the errors in a linear predictor of coefficient 

magnitude. For the purpose of illustration, consider a vertical band of the green channel 

at scale i, Vi
g(x, y). A linear predictor for the magnitude of these coefficients in a subset 

of all possible spatial, orientation, scale, and color neighbors is given by: 
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+ + +

                 (2.3) 

 

where |⋅| denotes absolute value and wk are the weights. This linear relationship can be 

expressed more compactly in matrix form as: 

 

v Qw=                                                           (2.4) 

 

where v contains the coefficient magnitudes of Vi
g(x,y) strung out into a column vector 

(to reduce sensitivity to noise, only magnitudes greater than 1 are considered), the 

columns of the matrix Q contain the neighboring coefficient magnitudes as specified in 

Equation (2.4), and w = (w1 … w9)T. The weights w  are determined by minimizing the 

following quadratic error function: 

 

( ) [ ]2E w v Qw= −                                                  (2.5) 

 

Using regression techniques the error function is minimized by differentiating with 

respect to w : 

 

( ) ( )2 TE w
Q v Qw

w
∂

= −
∂

                                              (2.6) 

 

setting the result equal to zero, and solving for w  to yield the following solution: 

 

( ) 1T Tw Q Q Q v
−

=                                                     (2.7) 
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Given the large number of constraints (one per pixel) and nine unknowns, it is generally 

assumed that the 9×9 matrix QTQ will be invertible. 

 

Given the linear predictor, the log error between the actual coefficient and the predicted 

coefficient magnitudes is: 

 

( ) ( )log logp v Qw= −                                                 (2.8) 

 

where the log(⋅) is computed point-wise on each vector component. The log(⋅) is used to 

scale the values of the coefficients. Note, if data standardization is used on the generated 

features after the statistics are calculated the log(⋅) operation may be omitted. It is from 

this error that additional statistics are collected namely the mean, variance, skewness and 

kurtosis. This process is repeated for scales i = 1,…,n, and for the subbands Vi
r and Vi

b, 

where the linear predictors for these subbands are of the form: 
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                (2.9) 

and 
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w D x y w V x y w V x y

= − + + + −

+ + + +

+ + +

               (2.10) 

 

A similar process is repeated for the horizontal and diagonal subbands. As an example, 

the predictor for the green channel takes the form: 
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                 (2.12) 

 

For the horizontal and diagonal subbands, the predictor for the red and blue channels are 

determined in a similar way as was done for the vertical subbands, Equations (2.9) and 

(2.10). For each oriented, scale and color subband, a similar error metric, Equation (2.11), 

and error statistics are computed.  

 

For a multi-scale decomposition with scales i = 1,…,s, the total number of basic 

coefficient statistics is 36(s - 1) (12(s - 1) per color channel), and the total number of 

error statistics is also 36(s - 1), yielding a grand total of 72(s - 1) statistics. These 

statistics form the feature vectors to be used to discriminate between images with and 

without hidden messages. The set of 72 features representing an input image are used in 

Chapter 4 as a subset of 526 features for the steganalysis detection system in this 

research.    

 

2.2.2 DCT Features 

 

In this method two types of features are calculated over an image, i.e., first order features 

and second order features. The following explanation of the generated features in the 

DCT and spatial domains are from Fridrich, (2004). A vector functional F is applied to 

the stego JPEG image J1. The stego image J1 is de-compressed to the spatial domain, 

cropped by 4 pixels in each direction, and recompressed with the same quantization table 
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used in decompressing J1 to obtain J2, as shown in Figure 2.7. The vector functional F is 

then applied to J2. The L1 norm is defined for a vector/ matrix as a sum of absolute values 

of all vector/matrix elements. The final feature f is obtained as an L1 norm of the 

difference in the vector functional between the original and modified image as follows: 

 

( ) ( )
1

1 2 L
f F J F J= −                                                  (2.13) 

 

 
 

Figure 2.7. Feature generating structure. 

 

First Order Features - The simplest first order statistic of DCT coefficients is their 

histogram. Representing the JPEG image with a DCT coefficient array dk(u,v) and a 

quantization matrix Q(u,v), where u,v = 1,…,8, k = 1, …, B. The symbol dk(u,v) denotes 

the u,vth quantized DCT coefficient in the kth block, there are total of B blocks. The global 

histogram of all 64 k DCT coefficients is denoted as Hr, where r = L, …, R, L = mink,i,j 

dk(u,v) and R = maxk,i,j dk(u,v).  

 

There are steganographic programs that preserve the histogram. Thus, individual 

histograms for low frequency DCT modes are added to the set of functionals. For a fixed 

DCT mode (u,v), let , r = L,…, R, denote the individual histogram of values dk(u,v), k = 1, 

…, B. Only histograms of low frequency DCT coefficients are used because histograms 

4 pixels 

Spatial Domain - I(x,y) 
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of coefficients from medium and higher frequencies are usually statistically unimportant 

due to the small number of non-zero coefficients.  

 

To provide additional first order macroscopic statistics to the set of functionals, dual 

histograms have been included. For a fixed coefficient value d, the dual histogram is an 

8×8 matrix guv
d 

 

( )( )
1

, ,
B

d
uv k

k

g d d u vδ
=

= ∑                                          (2.14) 

 

where δ(d, dk(u,v))=1 if u=v and 0 otherwise.  

 

Second Order Features - Let Ir and Ic denote the vectors of block indices while scanning 

the image “by rows” and “by columns”, respectively. The first functional capturing inter-

block dependency is the “variation” V defined as  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
118 8

1 1
, 1 1 , 1 1

, , , ,
cr

r r c c

II

I k I k I k I k
u v k u v k
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d u v d u v d u v d u v
V

I I

−−

+ +
= = = =

− + −
=

+

∑ ∑ ∑ ∑
.      (2.15) 

 

Most steganographic techniques in some sense add entropy to the array of quantized DCT 

coefficients and thus are more likely to increase the variation V than decrease.  

 

Embedding changes also increase the discontinuities along the 8×8 block boundaries. 

Two blockiness measures Bα, α = 1, 2, have been included to the set of functionals. The 

blockiness is calculated from the decompressed JPEG image (spatial domain) and thus 

represents an integral measure of inter-block dependency over all DCT modes over the 

whole image:  
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In the expression above, M and N are image dimensions and I(x,y) are grayscale values of 

the decompressed JPEG image.  

 

The final three functionals are calculated from the co-occurrence matrix of neighboring 

DCT coefficients. Recalling the notation, L ≤ dk(u,v) ≤ R, the co-occurrence matrix C is a 

square D×D matrix, D = R – L + 1, defined as follows  
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The co-occurrence matrix describes the probability distribution of pairs of neighboring 

DCT coefficients. It usually has a sharp peak at (0,0) and then quickly falls off. Let C(J1) 

and C(J2) be the co-occurrence matrices for the JPEG image J1 and its calibrated version 

J2, respectively. Due to the approximate symmetry of Cst around (s,t) = (0, 0), the 

differences Cst(J1) – Cst(J2) for (s,t)∈{(0,1), (1,0), (–1,0), (0,–1)} are strongly correlated. 

The same is true for the group (s,t)∈{(1,1), (–1,1), (1,–1), (–1,–1)}. For practically all 

steganographic schemes, the embedding changes to DCT coefficients make perturbations 

by some small value. Thus, the co-occurrence matrix for the embedded image can be 

obtained as a convolution CP(q), where P is the probability distribution of the embedding 

distortion, which depends on the relative message length q. This means that the values of 
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the co-occurrence matrix CP(q) will be more “spread out”. To quantify this spreading, 

the following three quantities are taken as features:  

 

N00= C0,0(J1)–C0,0(J2) 

N01= C0,1(J1)–C0,1(J2)+C1,0(J1)–C1,0(J2)+C–1,0(J1)–C–1,0(J2)+C0,–1(J1)–C0,–1(J2)  

N11= C1,1(J1)–C1,1(J2)+C1,–1(J1)–C1,–1(J2)+C–1,1(J1)–C–1,1(J2)+C–1,–1(J1)–C–1,–1(J2) .  

 

The final set of 20 vector functionals used in this method is summarized in Table 2.1. 

Three additional features are listed in the bottom of Table 2.1.  

 

Table 2.1. All 23 distinguishing functionals. 
Functional/Feature Name Functional F(⋅) 

Global Histogram 
1

/
L

H H  

Individual Histogram for 
5 DCT Modes 

1 1 1 1 1

21 31 12 22 13

21 31 12 22 13
, , , ,

L L L L L

h h h h h
h h h h h

 

Dual Histograms for 11 
DCT Values (-5,…,5) 

1 1 1 1

5 4 4 5

5 4 4 5
, ,..., ,

L L L L

g g g g
g g g g

− −

− −
 

Variation V 
L1 and L2 Blockiness B1,B2 

Co-occurrence N00,N01,N11 (features not functionals) 
 

The features in Table 2.1 are extended from 23 to 193 by analyzing DCT coefficients in 

the range of -5 to 5 (Pevny and Fridrich, 2007). Apply the cropping technique in Figure 

2.7 with a Markov process an additional 81 features are created for a total of 274 features 

(Pevny and Fridrich, 2007). The set of 274 features representing an input image are used 

in Chapter 4 as a subset of 526 features for the steganalysis detection system in this 

research.  
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2.3 Feature Preprocessing  

 

After features are generated it is necessary to preprocess the features that are to be used 

for classification. In many practical situations the classification model may receive input 

features whose values lie within different dynamic ranges. Thus, features with large 

values may inadvertently influence classification over features with small values. 

Another problem arises when a particular sample is not within the same area as the other 

features. To resolve these issues the feature preprocessing methods used in this research 

are data normalization (Theodoridis and Koutroumbas, 2006, pp. 214-215), data 

standardization (Dillon and Goldstein, 1984, pp. 12-13) and outlier removal (Barnett and 

Lewis, 1994). The training vectors in this section are represented by x = [x1,x2,…,x ] ∈ 

n with a dimension of n and the number of sample defined as .  

 

2.3.1 Data Preparation 

 

Data preparation scales the features so that they have similar magnitudes. Some of the 

procedures used for data preparation are feature standardization (Dillon and Goldstein, 

1984, pp. 12-13), feature min-max normalization (Theodoridis and Koutroumbas, 2006, 

pp. 214-215), min-max global normalization (Guyon et al., 2006, pp. 254), sigmoid 

normalization (Theodoridis and Koutroumbas, 2006, pp. 214-215) and softmax scaling 

(Theodoridis and Koutroumbas, 2006, pp. 214-215). We use zero-mean normalization 

(feature standardization) and min-max normalization (feature normalization) and describe 

them in more details. 

 

Min-max normalization performs a linear scaling on the original data. The 

normalization is calculated by estimates of the minimum and maximum of the values. 

The normalization technique is defined for the  available data samples and the kth feature 

as: 
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= − + =
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   (2.18) 

 

where a and b are scaling factors. When a = 0 and b = 1 the individual feature values are 

in the range of [0,1]. In the event that the denominator of Equation (2.18) is equal to zero 

that feature is removed, avoiding the potential of normalizing a feature of constants.  

 

Z-score normalization (Standardization) is based on the mean and standard deviation 

of each feature. Each feature in this method is separately standardized by subtracting its 

mean and dividing by the standard deviation as follows: 

 

ˆ , 1, 2,...,ik k
ik

k

xx kμ
σ
−

= =                       (2.20) 

 

where μk and σk are defined as: 
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and  is the number of samples. In the event that the standard deviation of a particular 

feature is zero (e.g., each element of the observed feature is a constant value), the feature 

is discarded. 
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2.3.2 Outlier Removal 

 

An outlier is defined as a sample that is inconsistent with the existing sample distribution. 

The inconsistency is defined by the analyst observing the input data. Outliers can be 

discarded if the number of samples is small in comparison with the remaining samples, 

e.g., one or two samples. Various guides are provided by Barnett and Lewis (1994) to 

determine a small number of outliers. When a large number of outliers exist, care must be 

taken by the analyst. In this case, the classification model may have to be trained to 

accommodate the presence of outliers, e.g., expectation maximization can be trained 

using ellipsoids. Two outlier removal techniques are used in the case of multivariate 

outliers in this section. The first is a technique in which the mean is used to identify an 

upper and lower boundary of a confidence interval to identify an outlier and remove the 

sample (Barnett and Lewis, 1994). The second is a multivariate outlier technique 

presented by Wilks (1963).  

 

Confidence Interval Outlier Removal – In confidence interval outlier removal, any 

sample outside of the confidence interval is considered an outlier. This method assumes 

the data is normally distributed and generates a confidence interval for each feature. The 

first step identifies an upper and lower limit means from the global mean as follows:  

1 ,
upper

upper i i
i Supper

for
S

μ μ
∈

= >∑ x x                                  (2.23)    

1 ,
lower

lower i i
i Slower

for
S

μ μ
∈

= <∑ x x                                  (2.24) 

 

where μ is the global mean vector  
 

1

1
i

i
μ

=

= ∑x                                                     (2.25) 
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where  is the number of samples, Supper and Slower are the number of samples meeting the 

criteria xi > μ and xi < μ, respectively. The term i ∈ Slower and i ∈ Supper indicate the 

indices when the criteria xi < μ and xi > μ are met. This now leads to the confidence 

interval defined as: 

 

( )( ) ( )( ),lower lower upper upperμ α μ μ μ α μ μ⎡ ⎤− − + −⎣ ⎦                     (2.26) 

 

where α is the parameter set by the user. A good starting point is α = 0.5 allowing the 

parameter to be adjusted based on the data set being analyzed. The terms multiplied by α 

in Equation (2.26) can be replaced by the critical of the t-distribution as described by 

Barnett and Lewis (1994, page 74) providing robustness of validity for the confidence 

interval. Another alternate modification to Equation (2.26) is to simply replace (μ − 

μlower) by the standard deviation of μlower and (μupper − μ) by the standard deviation of 

μupper allowing the standard deviation to determine the confidence interval. 

 

Wilks’ Outlier Removal – Wilks' outlier removal technique uses an upper bound for 

detection of a single outlier from a set of normal multivariate samples in which the 

maximum squared Mahalanobis distance (Equation (2.27)) approaches an F distribution 

(Wilks, 1963).  

 

( ) ( )2 1 T
i i iD μ μ−= − Σ −x x                                               (2.27) 

 

In multivariate outlier detection the normality between samples is assessed. A partial 

mathematical description is provided by Rencher (2002, pp. 101-104) and expanded in 

application by Trujillo-Ortiz, et al. (2008). 
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Determining the threshold is defined by the F distribution critical value (inverse of F 

cumulative distribution function) with n and (  -n-1) degrees of freedom using the 

Bonferroni correction (Bonferroni, 1935; 1936). The final critical value is defined by: 

 

( )
( ) ( )

21
1v

n
C

n nF
−

=
− − +

                                              (2.28) 

 

The index of an outlier(s) is identified by the following criteria: 

 
2
i vD C≥                                                                                    (2.29) 

 

This method is provided in full detail by Trujillo-Ortiz, et al. (2008). 

 

2.4 Feature Extraction 

 

Feature extraction maps the input samples, x, from the input feature space x ∈ n to a 

new feature space z ∈ p, where n > p, features are extracted. In this case, the 

classification is based on the samples in the new feature space, z, rather than on the input 

feature space. The advantage of feature extraction over feature selection is that no 

information from any of the elements of the input feature is lost. In certain situations 

feature extraction may be easier to calculate than feature selection. In this section two 

feature extraction methods are discussed, principal component analysis (PCA) where the 

new feature space z ∈ m and kernel PCA where the feature space ẑ ∈ p.   
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2.4.1 Principal Component Analysis (PCA) 

 

The idea of feature extraction using PCA (Hotelling, 1933) is to represent a new space in 

a way to extract mutually uncorrelated features from the current space. The new features 

are known as the principal components after transform mapping. The dimensionality 

assessment is accomplished by extracting the principal components from the correlation 

matrix and retaining only the factors described in Kaiser’s criterion (eigenvalues: λ ≥ 1) 

(Kaiser, 1960). The criterion is used as a guide line to determine the number of principal 

components to retain by calculating the correlation matrix of the input features. Each 

observed variable contributes one unit of variance to the total variance in the data set. 

Hence, any principal component that has an eigenvalue, λ, greater than one accounts for a 

greater amount of variance than had been contributed by one variable. Additionally, a 

principal component that displays an eigenvalue less than one indicates less variance than 

had been contributed by one variable. The covariance matrix, ∑, is used to extract 

eigenvectors, e, retaining only the number of principal components corresponding to 

Kaiser’s criterion. 

 

The basic concept of feature extraction using PCA is to map x onto a new space capable 

of reducing the dimensionality of the input space. The data is partitioned by variance 

using a linear combination of ‘original’ factors. To perform PCA, let x = [x1, x2,…,x ] ∈ 

n be a set of training vectors from the n-dimensional input space n. The set of vectors z 

= [z1,z2,…,z ] ∈ m is a lower dimensional representation of the input training vectors x 

in the m-dimensional space m. The vectors z are obtained by the linear orthonormal 

projection 

 

( )T μ= −z A x                                                         (2.30) 
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where A is an [n × m] matrix containing the top m eigenvectors and μ is the mean of the 

each set of features from x.  

 

2.4.2 Kernel PCA 

 

The Kernel Principal Component Analysis (Kernel PCA) is the non-linear extension of 

the ordinary linear PCA (Scholkopf et al., 1998). The input training vectors x = [x1, 

x2,…,x ] ∈ n are mapped by a nonlinear transformation φ(⋅): X→F to a new dimensional 

feature space F ∈ . The mapping φ(⋅) is represented in the kernel PCA by a kernel 

function K(⋅,⋅) which defines an inner product in . This yields a non-linear (kernel) 

projection of data which has a general definition as  

 

( )ˆˆ , b= +z A x xT
i jK                                                       (2.31)  

 

where Â is an [  × p] matrix containing the top p values, b is a bias vector and ẑ ∈ p is 

the vector of extracted features. The eigenvectors are not computed directly from the 

kernel matrix K(⋅,⋅). The kernel matrix must be centered as follows: 

 

( ) [ ] ( ) ( ) [ ] [ ] ( ) [ ], 1 , , 1 1 , 1c i j i j i j i jK K K K× × × ×= − − +K x x x x x x x x                      (2.32)  

 

where 1[  × ] is a [  × ] matrix in which every value is 1/ . The eigenvalues, λ, and 

eigenvectors, e, are determined with the use of Kc. The bias vector b is computed as: 

 

[ ] ( ) ( ) [ ]( )ˆ 1 , 1 , 1b × ×= −A x x x xT
i j i jK K                                        (2.33)  
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where 1  is an [  ×1] vector with each element equal to 1/ . 

 

2.5 Feature Ranking/Selection 

 

When a decision problem has an extremely large number of features, often a 

classification algorithm has difficulty identifying the best features to use for 

classification. For this reason one step in the classification process is the identification of 

features that retain as much class discriminatory information as possible. This procedure 

is known as feature ranking/selection or reduction. A first step in feature 

ranking/selection is to look at each of the feature independently and test its 

discriminatory capability for the problem. Although looking at the features independently 

is far from optimal, this procedure helps to discard features that do not separate the 

classes. In this section, five ranking methods are described which are used in this 

research, Bhattacharyya distance, Fisher’s discriminant ratio, signal to noise ratio, kernel 

Fisher’s discriminant feature ranking and zero-norm feature ranking. The selection of 

vital features for each of these methods is determined by the user based on either a 

ranking value threshold or the classification accuracy of a selected subset of top ranked 

features.  

  

2.5.1 Bhattacharyya Distance 

 

The Bhattacharyya distance is used as a class separability measure. For two-class normal 

distributions the Bhattacharyya distance is defined as: 

 

( ) ( )
1 11

1 1
1 1 1 1

1 1

| |1 1 2ln
8 2 2 | || |

μ μ μ μ
− +−

− +
− + − +

− +

Σ + Σ
Σ + Σ⎛ ⎞= − − +⎜ ⎟ Σ Σ⎝ ⎠

TB                        (2.34) 
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where | ⋅ | denotes the determinant of the respective matrix. The Bhattacharyya distance 

corresponds to the optimum Chernoff bound when 1 1− +Σ = Σ . It is readily seen that in this 

case the Bhattacharya distance becomes proportional to the Mahalanobis distance 

between the means. It should be noted that the Bhattacharya distance consists of two 

terms. The first term gives the class separability due to the mean difference and 

disappears when 1 1μ μ− += . The second term gives the class separability due to the 

covariance difference and disappears when 1 1− +Σ = Σ  (Fukunaga, 1990). 

 

The Bhattacharyya distance for the multi-class case is represented as: 

  

( ) ( )
1 2 21 1 ln ,

8 2 2 2
T i j i j

ij i j i j
i j

B i j
σ σ σ σ

μ μ μ μ
σ σ

− ⎛ ⎞+ +⎛ ⎞
= − − + ≠⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

       (2.35) 

 

where i, j ∈  in this case corresponding to the classes C = Cj = [C1,C2,…,Cc], j = 

1,2,…,c. In this case for each feature an individual class is compared to the remaining 

classes based on distance. The features are assigned a ranking value according to the 

greatest distance between classes.  

 

2.5.2 Fisher’s Linear Discriminant Ratio (FDR/F-Score) 

 

The FDR is used to quantify the separability capabilities of individual features (Fisher, 

1936). FDR is a simple technique which measures the discrimination of sets of real 

numbers. The within-class scatter matrix is defined as 

 

= ∑ C C
C

WS P S                                                          (2.36) 

 

where Sc is the covariance matrix for class C ∈ {-1,+1}  
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( )( )
1

μ μ
=
∈

= − −∑
C

C C C

C

x x T
i i

i
i

S                                                (2.37) 

 

and PC is the a priori probability of class C. That is, PC ≈ C/ , where C is the number of 

samples in class C, out of a total of  samples. The between-class scatter matrix is 

defined as 

 

( ) ( )μ μ μ μ= − −∑ C C C
C

T
BS P                                         (2.38)  

 

where μ is the global mean vector  

                                          

1

1
i

i

μ
=

= ∑x                                                           (2.39) 

 

and the class mean vectors μC is defined as 

                                                

1

1μ
=
∈

= ∑
C

C
C

C

xi
i
i

.                                                        (2.40) 

 

These criteria take a special form in the one-dimensional, two-class problem. In this case, 

it is easy to see that for equiprobable classes W| |S is proportional to 2 2
1 1σ σ− ++  

and B| |S proportional to ( )2
1 1μ μ− +− . Combining SB and SW, the Fisher’s Discriminant 

ratio results in the following equation  

 

FDR = ( )2
1 2
2 2
1 2

μ μ
σ σ

−
+

.                                                 (2.41) 
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FDR is sometimes used to quantify the separability capabilities of individual features. For 

the multi-class case, averaging forms of FDR can be used. One possibility is  

 

FDR = 
( )2

2 2

M M
i j

i j i i j

μ μ
σ σ≠

−

+∑∑                                             (2.42) 

 

where the subscripts i, j refer to the mean and variance corresponding to the feature under 

investigation for the classes Ci, Cj , respectively. 

For the one-dimensional multi-class case, the Fisher’s discriminant ratio is modified as:  

 

( )2

2 2
i j

ij
i j

FDR
μ μ
σ σ

−

+
 =                                                         (2.43) 

 

2.5.3 Signal-to-Noise Feature Selection 

 

One method for neural networks feature selection uses a signal-to-noise ratio (SNR) 

saliency measure (Bauer et al., 2000). This measure directly compares the saliency of a 

feature to that of an injected noise feature. The SNR saliency measure is computed using 

the following: 

  

( )

( )

21
,

1
10 21

,
1

10 log

J

i j
j

i J

N j
j

w
SNR

w

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
                                           (2.44) 

 

where SNRi is the value of the SNR saliency measure for feature i, J is the number of 

hidden nodes, 1
,i jw  is the first layer weight from node i to node j, and 1

,N jw is the first layer 
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weight from the injected noise node N to node j. The weights, 1
,N jw for the noise feature 

are initialized and updated in the same fashion as the weights, 1
,i jw emanating from the 

other features in the first layer. The injected noise feature is created such that its 

distribution follows that of a Uniform (0,1) random variable. The SNR screening method 

potentially requires only a single training run, because the SNR saliency measure appears 

highly robust relative to the effects of weight initialization. For the classification method 

probabilistic neural network described in Chapter 3, this method is used to determine the 

appropriate subset of features. 

 

2.5.4 Kernel Fisher’s Recursive Feature Elimination 

 

The SVM-RFE (Guyon et al., 2002) discussed in Section 2.1 is extended to the kernel 

Fisher’s discriminant (KFD) for feature ranking. The method in this subsection starts 

with all n available features, and performs KFD on the kernel space alpha vectors α 

(Louw and Steel, 2006). The feature ranking value for the kernel Fisher’s recursive 

feature elimination (KF-RFE) is calculated as 

 
( )

( )

mT

m mT

MR
N

=
α α
α α

                                                        (2.45) 

 

where  

 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

1

1

1

1

1 1 1 1

1
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+

− + − +

−
=−
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= − −

=

=
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                                  (2.46)                  
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and 

 

 ( ) ( ) ( ) ( ) ( )
1

1, ,
=
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
Tm m m

i j i j
j
j

N K I K
                     

(2.47) 

 

where C = {C-1, C+1} = {-1, +1}. The KF-RFE algorithm consists of the following steps: 

1. Calculate the alpha values as: 

                          ( )1 1 /M M Nα − += −  

2. For the number of input features n initialize the feature dimensionality as ñ = n, 

perform steps 3 through 6, n times. 

3. For the number of input features ñ perform steps 3 through 5, ñ times. 

4. Assign ranking values Rm by calculating Equation (2.45), removing one feature at 

a time at location m. 

5. Sort the ranking values Rm removing the highest ranked feature, storing the index 

of the removed feature and assign the new dimension as ñ ← ñ-1. 

 

2.5.5 Zero-Norm Feature Ranking 

 

Weston, et al. (2003) proposed a zero-norm feature ranking method capable of 

identifying features that are close to linear separation. This method was extended to the 

nonlinear case by using support vector machines with kernels capable of separating non-

linear features. The nonlinear feature selection method calculates ranking values (Rm) as 

follows: 

 

( ) ( ) ( )( )
,

, ,m
m k j k j k j k j

k j
R y y K Kα α= ∑ x x x xi                                 (2.48) 

 

where (•) in this method is a point by point multiplication of the two kernel matrices. The 

zero-norm feature ranking algorithm consists of the following steps: 
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1. Initialize the weights, ŵ, to ones. 

2. Weight x by the weights ŵ, x ← x • ŵ. 

3. Using the selected SVM model identify the alpha values,α, and support vectors, xk. 

4. Calculate Equation (2.48). 

5. Calculate the new weights ŵ ← ŵ |max(Rm) - Rm|T. 

6. Sort the weights ŵ, identify the weights that are less than a set threshold, remove 

the features corresponding to the identified weights, and store the index of the 

ranked feature. 

7. Repeat steps 2 through 6 until the maximum number of iterations is met or all of 

the features have been ranked. 

The threshold used in step 6 is set to the maximum ŵ divided by 103 (Weston et al., 

2006). The remaining weights ŵ for the nonlinear case should be normalized between 

zero and one to avoid an unnecessary feature increase in step 2. The maximum number of 

iterations, 20 (Weston et al., 2006), in step 7 avoids calculating n number of SVM models 

in step 3. 

 

2.6 Classification 

 

Machine learning for a classification task involves training over a set of samples x = [x1, 

x2,…,x ]T ∈ n. Each sample in the training set contains one target value C = Cj = 

[C1,C2,…,Cc], j = 1,2,…,c, (known as the class labels yi ∈ C, i = 1,2,…, ) which 

describes the class to which the sample is a member of. The objective is to separate the 

data into their classes such that the degree of association is strong between the data sets 

of the same class and weak between members of different classes. From the class 

separation, an unseen sample x0 ∈ n can then be appropriately classified. In this section 

six classification methods are presented, expectation maximization with mixture models 

(EM), k-nearest neighbors (k-NN), kernel Fisher’s discriminant (KFD), Parzen window, 

probabilistic neural networks (PNN) and support vector machines (SVM). 
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2.6.1 Expectation Maximization (EM)  

 

The idea behind the EM algorithm (Dempster et al., 1977) is that even though the data 

values of x, feature vectors x ∈ n, are unknown/incomplete the distribution f(x|p) can be 

used to determine an estimate for the maximum likelihood (Tomasi, 2006). In maximum 

likelihood estimation, the estimate to be modeled is the parameter(s) for which the 

observed data are the most likely. This is done by iteratively estimating the data 

parameters, then using the data to update the estimated parameters, until a desired 

convergence is met. The two major steps of the EM algorithm are the expectation step (E-

Step) and the maximization step (M-Step).  

 

The EM algorithm consists of choosing initial parameters for the means, ( )j
kμ , standard 

deviations, ( )j
kσ , and mixing probabilities, ( ) ( )|jp k , for a user defined number of 

clusters, k, then performing the E-Step and M-Step successively until convergence, where 

i is the current iteration and n is the number of samples. The convergence criteria is 

determined by examining when the parameters quit changing, i.e., when ( ) ( )1j j
k kμ μ +−  <ε  

& ( ) ( )1j j
k kσ σ +− < ε  & ( ) ( ) ( ) ( )1| |j jp k p k+− < ε  for some epsilon (ε) and distance 

calculation (Euclidian distance). The maximum likelihood estimation is a method of 

estimating the parameters of the distributions based upon the observed data. 

 

The expectation step (E-Step) calculates the membership probabilities, ( )|p k  (Tomasi, 

2006). The mixing probabilities kp are viewed as the sample mean of the membership 

probabilities ( )|p k  assuming a uniform distribution over all the data points. The 

Gaussian function, ( )( ); ,i i
k kg μ σ ( )x , is used to compute mixture of Gaussian functions as 

shown in the denominator of ( )|p k .  
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The maximization step (M-Step) uses the data from the expectation step as if it were 

measured data to determine the maximum likelihood estimate of the parameter (Tomasi, 

2006). This estimated data is often referred to as the “imputed” data. This step is 

dependent upon the membership probabilities ( )|p k  which are computed in the E-

Step. The EM algorithm consists of iterating the mean, standard deviation, and mixing 

probabilities until convergence. The mixing probabilities are the sample mean of the 

conditional probabilities ( )|p k  assuming a uniform distribution over all the data 

points.  
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2.6.1.1 Mixture Models 

 

In mixture models, also known as model-based Gaussian clustering, the multivariate 

Gaussian normal is used as a density function similarly described in Equation (2.50). The 

general multivariate normal density for n dimensions is  

 

( )
( ) ( )

( )

1

1/2

1exp
2; ,

2

T
k k k

k k n

k

g
μ μ

μ
π

−⎛ ⎞− − ∑ −⎜ ⎟
⎝ ⎠∑ =

∑

x x
x .                     (2.54) 

 

The geometric characteristics (size, shape and orientation) of the clusters are determined 

by the covariance matrix Σk which is generated in terms of eigenvalue decomposition 

described in Martinez and Martinez (2002). The decomposition of the covariance matrix 

Σk is used as a suitable model for the geometric characteristics of the cluster. The 

structure of the covariance matrix is as follows: 

 

λΣ = D A DT
k k k k k                                                     (2.55) 

 

where λk is a scalar, Dk is the orthogonal matrix of eigenvectors and Ak is a diagonal 

matrix whose elements are proportional to the eigenvalues of Σk. Note that in EM the 

values pk, μk, and σk are updated after each iteration and in the mixture models σk is 

replaced by Σk to represent the geometric characteristics of the clusters. 

 

The eigenvalue decomposition can be modeled as various clustering arrangements. 

Celeux and Govaert (1995), describe in detail fourteen models based on the eigenvalue 

decomposition. Allowing for variations in the orientation, volume, shape and size of the 

clusters; six of these models are shown in Table 2.2 (Martinez and Martinez, 2002).  
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Table 2.2. Parameterization for mixture models. 

Model kΣ  Geometric 
Shape Volume Shape Orientation 

1 λI  Spherical Equal Equal NA 
2 kλ I  Spherical Variable Equal NA 
3 TλDAD  Ellipsoid Equal Equal Equal 
4 T

k k k kλ D A D  Ellipsoid Variable Variable Variable 
5 T

k kλD AD  Ellipsoid Equal Equal Variable 
6 T

k k kλ D AD  Ellipsoid Variable Equal Variable 
 

The eigenvalue decomposition can be modeled as various clustering arrangements, i.e., 

spheres, ellipsoids and rotations of ellipsoids. Allowing the orientation, volume, shape 

and size of the clusters define the various models used. Figure 2.8 shows the mixture 

model using rotated ellipsoids (Model 4) to generate the decision boundary around each 

class. 

   

  

Figure 2.8. Expectation Maximization using mixture models with Decision Boundary. 

 

 



 

55 

2.6.1.2 Bayes Classifier 

 

The EM algorithm can be used to find a class label for an input sample. Classification 

uses input samples described by feature vectors x0 ∈ n to assign the samples to a given 

class C = Cj = [C1,C2,…,Cc], j = 1,2,…,c. The Bayes classifier extends a general 

multivariate normal case where the covariance matrix Σj for each class is different. For 

the multi-class classifier each class must have individual conditional probability densities 

where the densities are modeled as normal distributions. The classes Cj are defined as 

normal distributions centered about the mean vector μj. The mean vector, μj, and the 

covariance matrix, Σj, are calculated using the EM algorithm. The vector x0 is a n-

dimensional vector of the observed data, and |Σi| and Σ-1
i are the determinants and inverse 

covariance matrix of the given class. The posterior probability of class membership can 

be calculated by Bayes rule if Cj is defined as the event of belonging to population j. 

Using the density function ( )( ); ,i i
k kg μ σ ( )x  (Tomasi, 2006), the Bayes classifier can be 

expressed in terms of the prior probabilities, P(Ci), and posterior probability of class 

membership as follows: 
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                    (2.56) 

 

where the a priori probabilities P(Cj) are the estimates of belonging to a class and under 

the assumption that Σj=Σ for ∀ j. 
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2.6.2 k-Nearest Neighbors  

 

k-Nearest Neighbors, Figure 2.9, is a lazy learning approach that compares new samples 

with all of the samples in the training set, looking for the kth nearest (Cover and Hart, 

1967; Duda et al., 2001; Bishop, 2006).  

 

 
Figure 2.9. k-NN Decision Boundary. 

 

Let the vectors x = [x1,x2,…,x ]T ∈ n and class labels yi ∈ C = [C1,C2,…,Cc], c ∈ Z, i = 

1,2,…, , be a set of training vectors. Given an unknown feature vector x0 and a distance 

measure, the algorithm for the k-nearest neighbor rule is as follows (Theodoridis and 

Koutroumbas, 2006): 

 Out of the  training vectors x, identify the k-nearest neighbors, irrespective of 

class label. k is chosen to be odd for a two-class problem, and in general not to be 

a multiple of the number of classes. 

 Out of the k samples, identify the number of vectors, kj, that belong to class C, 

where j
j

k k=∑ . 
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 Assign x0 to the class C with the maximum number of kj of samples. 

 

The distance measures used from the feature xi to each of its k-nearest neighbors include 

the Euclidian and Mahalanobis. The advantage of k-nearest neighbor is the simplicity of 

the assignment procedure. The disadvantage of the method lies in the necessity to store 

all samples and compare each with an unknown sample (Fukunaga, 1990).  

  

2.6.3 Kernel Fisher’s Discriminant (KFD) 

 

The kernel Fisher discriminant is the non-linear extension of the linear FLD (Jaakola and 

Haussler, 1998; Mika et al., 1999; Scholkopf and Smola, 2002). In the linear case, 

Fisher’s discriminant is computed by maximizing the coefficients of the following 

equation 

 

( )
T

B
T

W

SJ
S

=
w ww
w w

                                                         (2.57) 

 

To use the Fisher’s discriminant for nonlinearly separable data Mika, et al. (1999) map 

the input feature space with the use of a kernel. The input space is represented by a 

training set xi of vectors with a feature dimensionality of n. The corresponding class 

labels are represented as yi ∈ C, where C = [C-1, C+1] = [-1, +1], i = 1,2,…,  and  is the 

training set size. The basic idea is to first map the input features from the input space to 

the kernel space via a kernel function and then perform linear FLD. The aim is to find a 

direction w = ∑iαiφ(xi) from the feature space to the kernel space given by alpha vectors 

α = [α1,…,α ]T (Mika et al., 1999). Using the definitions of SB and SW the Fisher’s linear 

discriminant in the mapped feature space can be defined as 
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                                                        (2.58) 

 

where M = (M-1-M+1)(M-1-M+1)T is a [ × ] matrix, 
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and 

 

 ( ) ( )
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C

x x x x
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(2.60) 

 

where C = {C-1, C+1} = {-1, +1}.  

 

In (Mika et al., 1999), numerical issues and regularization are discussed regarding the 

calculation of (2.60). This is resolved by simply adding a multiple of the identity matrix 

to N defined as: 

 

N N Iμ μ= + .                                                       (2.61) 

 

The next step is to use the alpha vectors and the kernel matrix to project the n-1 

dimensional input feature space into a one dimensional space as follows:  

 

( )x̂ , α= x xi jK .                                                    (2.62) 
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The projection in (2.61) now becomes the space that is to be solved using an optimization 

solution to maximize the margin of separation between classes as shown in Figure 2.10. 

In (Mika et al., 1999), the Matlab Optimization Toolbox (2004) is used to solve the 

optimization problem (Scholkopf and Smola, 2002) with the projected space calculated in 

(2.62). In this research the one dimensional SMO (Franc and Hlavac, 2007) is used as the 

optimization solution. This results in the non-negative alpha vectors ( )1ˆ ˆ ˆ,...,iα α α= with 

an upper bound Ĉ, ˆ ˆ 0α≥ ≥C . The support vectors for the KFD trained model are xk = xi 

and the decision function of the KFD classifier is written as sign(f(x)) where f(x) is 

defined by: 

 

( ) ( ) ( )
1

ˆ ,i i i
i

f b y K bφ α
=

= + = +∑x w x x x .                                 (2.63)   

 

This is equivalent to the maximal margin hyperplane in the input space defined by the 

kernel (Cristianini and Shawe-Taylor, 2000). The goal of the KFD is to solve for α and 

the bias b. To compute the bias b, Equation (2.63) is rewritten as follows: 

 

( )
1

,
s

k k k i i
k

y K b yα
=

+ =∑ x x .                                           (2.64)   

 

Therefore, the bias is calculated by obtaining the average as (Scholkopf and Smola, 

2002): 
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1 1
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s

i k k k i
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In order to reduce the number of false positives and false negatives the optimal bias in 

(2.65) can be adjusted accordingly. In this case the bias is a threshold (Scholkopf and 

Smola, 2002).  

 

 
Figure 2.10. KFD Decision Boundary using RBF Kernel. 

 

2.6.4 Parzen Window 

 

Parzen estimation is a refinement of histogramming (Parzen, 1962; Fukunaga, 1990; 

Duda et al., 2001; Bishop, 2006). The basic idea behind Parzen window estimation is that 

the knowledge gained by each training sample x of the input space, n, is represented by 

a function centered at x in the feature space. The functions themselves are represented 

with the use of a distance measure or a kernel estimator. The final class estimation is 

derived by summing the results from the kernel functions of each training sample:  
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1

1 , x
k

k i
ik

p K
=

= ∑ x .                                            (2.66) 
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For example, the Parzen window density model is optimized by maximizing the 

likelihood of the training data with the use of a Gaussian window surrounding each input 

data point. The Gaussian window can be represented with the use of a kernel function 

K(x,xi) as an interpolation function which defines an inner product between the individual 

training sample. The Radial Basis kernel function uses a window width parameter,σ, 

which is also known as the spread of the function: 
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2

2
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22
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i
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σπ σ=
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∑
x

.                             (2.67) 

 

This results in a sum of small multivariate Gaussian probability distributions centered at 

each training sample x, an example is shown in Figure 2.11. As the density of the training 

samples and their respective Gaussian distributions increase the estimation of the 

probabilities approach the true probability density function (PDF) of the training samples. 

The estimation for classification for a data cluster is then based on a threshold set for the 

combined posterior probability from all samples. The classification decision assigns the 

samples to the class with maximal posterior probability according to the inequality: 
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⎜ ⎟ ⎜ ⎟
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∑ ∑
x x

,∀  k≠j  (2.68) 

 

This method requires a reasonably large training data set and is computationally 

inexpensive during training but is computationally expensive for testing. During testing 

the kernel function must be computed for each of the training samples making a 

comparison between the new sample x0 and all of the existing training samples x. Several 

kernel approaches have been proposed in literature (Fukunaga, 1990; Wand and Jones, 

1995). The kernels were originally presented by Parzen (1962).  
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Figure 2.11. Parzen Density Estimator with RBF window with Decision Boundary. 

 

2.6.5 Probabilistic Neural Networks (PNN) 

 

The classification frame work of the probabilistic neural network is shown in Figure 2.12 

(Specht, 1998; 1990). There are a few decisions that have to be made regarding training 

of the neural network. First, the number of training samples and number of classes are 

selected for the pattern layer; this defines the structure of the network. For example, the 

set of input training samples is represented as x = [x1,x2,…,x ]T ∈ n and a class label yi 

∈ C = [C1,C2,…,Cc], i = 1,2,…, . This will result in c groups with each group in the 

pattern layer containing  neurons. Second, for the summation layer the smoothing 

parameter, σ, in the nonlinear operation f(zi) of the neural network must be determined. 

As a general guideline the value of the smoothing parameter, σ, should chosen as a 

function of the dimension of the problem, n, and the number of training samples,  

(Specht, 1990). The structure of the probabilistic neural network classifier has three 

layers as shown in Figure 2.12, pattern layer, summation layer and the decision layer. The 

pattern layer forms a dot product of the input features, x, with the weight vectors, wi, 
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resulting in zi = x•wi. A nonlinear operation f(zi) on zi is preformed prior to outputting the 

activation to the summation level.  

 

( ) 2

1exp i
if

σ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠

zz                                                           (2.69) 

 

The summation layer sums the inputs from the pattern layer that corresponds to the class 

from which the training patterns were selected. The output layer returns the summation 

values for each of the c classes, a two-class example is shown in Figure 2.13. Each output 

values P1,…,Pc is the posterior probability that the sample belongs to that particular class, 

where 
1

1
c

j
j

P
=

=∑ .  

 

 
Figure 2.12.  Probabilistic Neural Network Classification Structure. 
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Figure 2.13. PNN with Decision Boundary. 

 

2.6.6 Support Vector Machine (SVM) 

 

SVM performs pattern recognition for two-class problems by determining the separating 

hyperplane that maximizes the distance between the closest points of each class in the 

training set (Scholkopf et al., 1998; 1999; 2002; Burgers, 1998; Vapnik, 1998; Platt, 

2000; Hsu et al., 2006). These closest points are called support vectors. In finding the 

hyperplane, the SVM performs a nonlinear separation in the input space by using a 

nonlinear transformation φ(xi) that maps the data points xi of the input space, n, into a 

potential higher dimensional space, called kernel space  (  > n). The mapping φ(xi) is 

represented in the SVM classifier by a kernel function K(xi, xj) that defines an inner 

product in .  

 

The optimal hyperplane is the one with the maximal distance (in space p) to the closest 

points φ(xi) of the training data, an example is shown in Figure 2.14. Determining the 

hyperplane requires maximizing the following function with respect to α 
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( ) ( )
1 1 1

1 ,
2i i j i j i j

i i j

W y y Kα α α
= = =

= −∑ ∑∑ x xα                                (2.70) 

 

under the constraints ,j jj
yα∑ i = 1,…, . The non-negative Lagrangian multipliers are 

( )1,..., skα α α=  with an upper bound Ĉ, ˆ 0α≥ ≥
s

C . The Lagrangian multipliers are 

also known as the alpha vectors.  

 

With the given support vectors xk and class labels yk, the decision function of the SVM 

classifier can be written as sign(f(x)) where f(x) is defined by: 

 

( ) ( ) ( )
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,
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k

f b y K bφ α
=

= + = +∑x w x x x                                   (2.71)   

 

This is equivalent to the maximal margin hyperplane in the input space defined by the 

kernel (Cristianini and Shawe-Taylor, 2000). The goal of the SVM is to solve for α, the 

bias b and the support vectors xk. To compute the bias b, Equation (2.71) is rewritten as 

follows: 
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Therefore, the bias is calculated by obtaining the average as (Scholkopf and Smola, 

2002): 
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In order to reduce the number of false positives and false negatives the optimal bias in 

(2.73) can be adjusted accordingly. In this case the bias is a threshold (Scholkopf and 

Smola, 2002).  

 

 
Figure 2.14. SVM with Optimal Hyperplane. 

 

Solving Equation (2.70) is a dual quadratic programming (QP) problem. There are 

several methods used to solve the quadratic programming problem, including Kernel-

Adatron (Friess et al., 1998; Cristianini and Shawe-Taylor, 2004), LOQO (Vanderbei and 

Shanno, 1999) and sequential minimal optimization (SMO) (Cristianini and Shawe-

Taylor, 2000; Franc and Hlavac, 2007; Mak, 2000; Platt, 2000). 

  

Several solutions are available as complete SVM systems to include LIBSVM (Chang 

and Lin, 2001), Matlab Optimization Toolbox (2007) and SVMlight (Joachims, 1998, 

2007). Each of these methods has individual advantages and disadvantages that are 

beyond the scope of this research. 
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2.7 Multi-Class Classification 

 

In the previous section two-class classifiers were described. However, in many real world 

problems there are cases where more than two classes exist. The classification methods 

EM, k-NN, KFD, Parzen window, probabilistic neural network and SVM can all be 

modified for a multi-class solution. EM can be used to determine the mean and 

covariance for each of the classes individually and classified using the Bayes classifier. 

This however, has the disadvantage of producing inaccurate results when the class 

distributions are not normally distributed or linearly separable. k-NN can also be trained 

to solve a multi-class problem. Selecting k-nearest neighbors of the input vector x a count 

of the training samples from each of the classes can be used to determine the class label 

of x. The multi-class case performs better with a larger number of input training vectors x 

but has the disadvantage of determining the number of nearest neighbors. Unlike the two-

class case where better performance is achieved for large k, for the multi-class 

classification this is not always true. The KFD is a two-class classifier by design. It could 

be converted into a multi-class system in a similar manner as the BSVM (Hsu et al., 

2002). In this research only the two-class KFD will be used. For the Parzen window 

density estimator a multi-class solution can be achieved. As with the two-class case, this 

method is easily trained but computationally expensive. The expense is in terms of its 

processing time and memory allocation when the number of samples is large. For a multi-

class solution the larger the number of training samples per class the better the 

performance is achieved. In the multi-class case of the SVM two methods are used in 

which the margins of separation are determined in the kernel space, BSVM (Hsu and Lin, 

2002) and BSVM 2.0 (Hsu et al., 2002). BSVM 2.0 solves the multi-class classification 

problem for the solution of large classification and regression problems. It includes three 

methods  

 Multi-class classification by solving a single optimization problem using a bound-

constrained formulation.  
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 Multi-class classification using Crammer and Singer's formulation (Crammer and 

Singer, 2000; Crammer and Singer, 2001).  

 Regression using a bound-constrained formulation   

 

While each of these methods can be used for multi-class classification they each have 

disadvantages when compared to their two-class counterparts. In this research the two-

class SVM is used since experimentation has shown that the BSVM 2.0 begins to provide 

a reduction in classification accuracy when more than 5 classes are used for the clean and 

stego image data sets.  

 

In several multi-class classification methods two-class classifiers are combined using 

one-against-one and one-against-all (Fukunaga, 1990; Duda et al., 2001; Tax and Duin, 

2002; Lin et al., 2003; Bishop, 2006; Theodoridis and Koutroumbas, 2006). Learning 

architectures are used to combine several two-class classifiers in order to create a multi-

class classifier. In these methods training is done by comparing one class against each of 

the other classes or by training one class against the remaining classes. This produces 

several classifiers in which a winner take all approach is used. The winner take all assigns 

the class label based on a majority vote wins. In this section the following multi-class 

approaches are presented: one-against-one and one-against-all methods.  

 

2.7.1 One-Against-One 

 

In one-against-one each class is trained against each of the others. The goal is to train the 

multi-class rule based on the majority vote strategy. The majority votes based multi-class 

classifier assigns the test input vector x0 into class C = [C1,C2,…] having the majority of 

the votes. This is a fairly reliable method assuming that the feature space is separable 

from one class to the other. Problems arise when a large number of classes are being 

trained; the resulting system becomes computationally expensive as the number of 

classifiers increases factorially. The one-against-one approach constructs k(k-1)/2 
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classifiers from two different classes for each one of the training data sets. This is for 

training data from the ith and the jth classes which has k classes. As an example consider a 

case with 10 classes, k = 10. This will require 45 classifiers to be trained. In most 

classification systems a voting strategy is used. In binary classification the voting strategy 

votes are cast for all data points x where the majority number of votes for a class wins, 

“Max Wins”. This may lead to a situation where two classes have the same number of 

votes. One approach to resolving this conflict is to select the class with the smallest index 

(Hsu et al., 2002).  

 

2.7.2 One-Against-All 

 

Several articles have been written on one-against-all training methods (Liu and Zheng, 

2005). The one-against-all method trains the multi-class problem as a series of Ci two-

class subtasks that can be trained by any two-class classifier. If there is k > 2-class 

exemplars, k 2-class classifiers will be constructed which separate one class from all 

other classes. To get k-classifiers it is common to construct a set of binary classifiers each 

trained to separate an individual class from the remaining classifiers. One disadvantage of 

this method is with a significant number of classifiers a large number of two-class 

classifiers will need to be compared. When grouping all of the classes together the 

classification may become more difficult as separating the one from all of the rest may 

not lead to a separation between the classes, and lead to poor classification performance.  

 

2.8 Classifier Fusion 

 

To improve the classification accuracy for the multi-class classification, combining 

classifiers, classifier fusion, may prove useful on the overall performance of the 

classification system. The main focus of recent research in classifier fusion has been on 

establishing the relationship between the diversity of the classifiers and their resulting 

accuracy/performance. The paradigms of the different models differ on the assumptions 
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about classifier dependencies, type of classifier outputs, aggregation strategy either global 

or local, aggregation procedure such as a function, a neural network or an algorithm, etc. 

(Kittler et al., 1998; Duin and Tax, 2000; Ruta and Gabrys, 2000; Duin, 2002, Kittler, 

2002). Three methods of combining classifiers are described which included boosting, 

Bayes networks and probabilistic neural network combiners. 

 

2.8.1 Boosting 

 

Boosting is a powerful technique for combining an ensemble of base classifiers to 

produce a form of committee whose performance can be significantly increased over any 

of the single classifiers. The most widely used form of boosting is AdaBoost, developed 

by Freund and Schapire (1995). Boosting provides good results even if the base 

classifiers, are weak learners, and have a performance that is only slightly better than 

random (Freund and Schapire, 1999).  

 

The primary difference between boosting and bagging is that the base classifiers are 

trained in sequence, and each base classifier is trained using a weighted form of the data 

set in which the weighting coefficient associated with each data point depends on the 

performance of the previous classifiers. In particular, points that are misclassified by one 

of the base classifiers are given greater weight when used to train the next classifier in the 

next sequence. Once all the classifiers have been trained, their predictions are then 

combined through a weighted majority voting scheme. AdaBoost calls a given weak or 

base learning algorithm repeatedly in a series of rounds, yi = 1,…, . The precise form of 

the AdaBoost algorithm is given below: 

 

AdaBoost Algorithm (Bishop, 2006, pp. 658) 

 1. The data weighting coefficients {wi} are initialized as ( )1 1=iw for i = 1,…, . 

 2. For k = 1,…,K: 
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  (a) Fit a classifier Mk(x) to the training data by minimizing the weighted  

  error function 

( ) ( )( )
1=

= ≠∑ xk
k i k i i

i
J w I M y                                    (2.71) 

  where ( )( )≠xk i iI M y  is the indicator function and equals 1 when Mk(xi)  

  ≠ yi and 0 otherwise.  

             

  (b) Evaluate the quantities 
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  and then use these to evaluate  

1ln εα
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                                                  (2.73) 

  (c) Update the data weighting coefficients 

( ) ( ) ( )( )1 α ≠+ = xk k i iI M yk k
i iw w e                                               (2.74) 

 3. Making a prediction using the final trained model for an input image sample x0

 is given by 

( ) ( )0 0
1
α

=

= ∑x x
K

k k
k

f M                                           (2.75) 

 

The first base classifier M1(x) is trained using weighting coefficients ( )1
iw  that are all 

equal, which corresponds to the usual procedure for training a single classifier. In Step 

2(c), subsequent iterations in the weighting coefficients ( )k
iw are increased for data points 

that are misclassified and decreased for data points that are correctly classified. 

Successive classifiers are forced to place greater emphasis on points that have been 

misclassified by previous classifiers, and data points that continue to be misclassified by 

successive classifiers receive even greater weight. The quantities εk represents the 
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weighted measures of the error weights of each of the base classifiers on the data set. 

Therefore, in Step 2(b) the weighing coefficients αk  give greater weights to the more 

accurate classifiers when computing the overall output given by Step 3 (Bishop, 2006, pp. 

658). 

 

2.8.2 Bayes Network for Model Averaging 

 

Bayes model averaging merges together several multi-class classifiers by combining the 

probabilistic density estimation of each classifier’s classification accuracy as a mixture of 

Gaussians (Hoeting et al., 1999; Murphy, 2001). Murphy’s (2001) Bayes Net Toolbox 

(BNT) for Matlab was used in the analysis to facilitate the computations in the model 

averaging. The probabilistic density estimation specifies the local conditional probability 

distributions (CPD) for a classification model, Mk, where k is one of the K classifiers, and 

M is the set of all classifiers. The CPD of each model Mk is p(Mk|T). This represents for 

each class, the probability of what a classification model will classify a target instance T 

as. In this research the implementation uses confusion matrices which represent the 

correct and incorrect classification for each multi-class classifier providing the 

probabilistic density estimation for each classifier. 

 

The fusion process uses the classifications from the classification models (M), in 

conjunction with Bayes Rule, to compute the posterior probability for each target 

classification T = c:  

  

( ) ( ) ( )
1

| |M η
=

= = = =∏
K

k
k

p T c p M T c p T c                                  (2.76) 

 

where η is a normalizing constant. 
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The final classification is then the target classification, T = c, with the highest probability. 

The prior probability of p(T) is calculated from the number of targets.  

 

2.8.3 Probabilistic Neural Network (PNN) Fusion 

 

The fusion method in this work is an extension from the two-class fusion investigated by 

Leap et al., (2007) to a multi-class system fusion. In this method the outputs of individual 

classification systems are treated as input features to train a probabilistic neural network 

(Specht, 1990) for fusion. The key is to use the class labels from each of the systems as 

posterior probability estimates and employing them as features in the neural network. It 

should be noted that one of the posterior probabilities from the input classifier should be 

removed. For example, if K three-class classifiers are used, then each of the classification 

models, Mk, will contribute two inputs for training the PNN. The fusion method treats the 

posterior probabilities from individual detection systems as features to the neural network 

and outputs an overall posterior probability of a sample as being in a given class. This 

fusion does not impose any independence assumptions on the input systems.  

 

2.9 Summary 

 

This chapter presented the key elements necessary to solve the steganalysis multi-class 

classification system for identifying JPEG steganography embedding methods. JPEG 

image representation was described by introducing the discrete cosine transform and the 

JPEG image format and it compression steps. The feature generation methods described 

in this chapter were a wavelet based method and a discrete cosine transform method. In 

feature preprocessing outlier removal, data normalization and data standardization were 

presented. For feature extraction, PCA and Kernel PCA were described. The feature 

ranking/selection method presented in this chapter were the Bhattacharyya distance, 

Fisher’s linear discriminant ratio, signal to noise ratio, kernel Fisher’s discriminant 

recursive feature elimination and the zero-norm feature ranking. In classification both 
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two-class and multi-class classification method used in this research were described; the 

six methods used are EM, k-NN, KFD, Parzen window, probabilistic neural networks and 

SVM. A section was devoted to improving classification performance with classifier 

fusion covering boosting, Bayes networks and probabilistic neural networks.  

 

In this chapter several methods have been described that are essential in making a 

comparison with the proposed overall detection method described in Chapter 3. Some of 

the methods described in this chapter are modified to accommodate the needs of the 

proposed method. In other cases, the methods in this chapter are incorporated into the 

system. 
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III. Methodology 

 

This chapter presents a multi-class fusion system for classification of steganographic 

methods. This detection method classifies JPEG images based on generated image 

features whereby previously unseen images are associated with exactly one element of 

the label set, i.e., clean or type of stego image. The stego image consists of one of seven 

targeted embedding methods, F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), JSteg 

(Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 (Sallee, 

2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and UTSA 

(Agaian et al., 2006).  

 

Figure 3.1 shows the classification system developed in this research. The image set 

consists of clean and stego images that have data embedded using one of nine methods. 

Features are generated from each image and each feature set is assigned a class label 

identifying the embedding method used. The features are used in three components of the 

multi-class system. See Figure 3.1. The first component is Multi-class Detection for 

EM/k-NN/Parzen/PNN. The existing feature improvement methods and classifiers are 

used to create four multi-class detection systems that each return a class label assigned to 

the input sample (Rodriguez and Peterson, 2008a). The second component is Multi-class 

Detection for KFD/SVM. It contains a new feature ranking method along with a new 

multi-class tree to generate a multi-class classification label with the combination of two-

class classifiers. The third component, Commercial Detection Systems, has two 

commercial steganalysis tools that return class labels for a variety of stego methods. The 

assigned class labels for 8 multi-class systems are fused shown as Classifier Fusion in the 

figure and a final class label is assigned. 
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Figure 3.1. Detection System. 

 

This chapter presents four improvements to steganalysis pattern recognition. The first is 

the creation of new features generated from the frequency bands and directions of the 

Discrete Cosine Transform (DCT) coefficients of JPEG images. The second 

improvement is a new feature ranking method. From the original input feature set, it 

selects a subset of features specifically designed for the kernel Fisher’s discriminant 
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(KFD) and the support vector machines (SVM). The third improvement is a multi-class 

classification tree designed for the KFD and SVM classifiers. The final contribution of 

this steganalysis classification system is the fusion of multi-class classifiers. These 

improvements are designed to increase the identification of embedding methods used to 

create stego images. 

 

3.1 Feature Generation 

 

This section details the novel DCT feature generation method. Figure 3.2 illustrates the 

main components of the novel feature generation method.  

 
Figure 3.2. General Feature Generation System. 

 

The first component builds on details of the DCT coefficient representation which is used 

in a decomposition. Two metrics are calculated on each 8×8 block of the decomposed 

coefficients in a JPEG image. The first metric is a difference calculation that compares 

DCT coefficients with neighboring coefficients. The second metric is a least square linear 

regression metric that uses DCT coefficients, shifted coefficients and neighboring 

coefficients to calculate weights used in the regression model. Statistics (e.g., mean, 

variance, etc.) are calculated over the DCT coefficients, neighboring coefficients, shifted 

coefficients and the metrics. The last three set of statistics are then subtracted from the 

statistics of the DCT coefficients creating a set of 180 features used to identify clean and 

stego images.   
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3.1.1 DCT Representation 

 

The standard DCT used in JPEG compression has two properties, i.e., the directional and 

frequency distributions of 8×8 blocks within an image (Rao and Yip, 1990). In JPEG 

compression on a two dimensional (2-D) signal, the zig-zag scan shown in Figure 3.3a is 

used to take advantage of the frequency distributions of the DCT shown in Figure 3.3b 

(Brown and Shepherd, 1995, pp. 224). The DCT decomposition divides the coefficients 

into low, medium and high frequencies. Figure 3.3c shows the breakdown of the vertical, 

diagonal and horizontal directions of the coefficients. In this research both the 

frequencies and directions of the DCT are investigated to generate features. Figure 3.3d 

shows an 8×8 image with a horizontal edge between black and white pixels. The 

corresponding 2-D DCT of Figure 3.3d is shown in Figure 3.3g which has coefficients 

that are prominent along the first column. In Figure 3.3e an image is shown with a 

diagonal edge between black and white pixels with a corresponding 2-D DCT shown in 

Figure 3.3h which has coefficients located along the diagonal. In Figure 3.3f an image is 

shown with a vertical edge between black and white pixels with a corresponding 2-D 

DCT shown in Figure 3.3i which has coefficients located along the first row.  
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a) b) c) 

 
d) e) f) 

 
g) h) i) 

Figure 3.3. DCT decomposition a) zig-zag scan pattern b) low, medium and high 

frequency distributions c) vertical, diagonal and horizontal directions d) 8×8 image with a 

horizontal edge between pixels e) 8×8 image with a diagonal edge between pixels f) 8× 8 

image with a vertical edge between pixels g) 2-D DCT representation of horizontal image 

h) 2-D DCT representation of diagonal image i) 2-D DCT representation of vertical 

image. 
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3.1.2 Arrangement of Decomposed DCT Coefficients 

 

The calculation of the features requires rearranging the DCT coefficients in three 

different ways. The first, DCT decomposition separates coefficients into areas within the 

8×8 DCT block, three frequency bands as well as three directions. This results into 9 

areas that the coefficients are decomposed into where 6 different areas are used. The 

second is a set of coefficients generated by shifting the 8×8 pixel blocks in the spatial 

domain and recalculating the quantized DCT coefficients. The DCT decomposition 

feature method is then used over these shifted blocks. Three different shifting operations 

are used, shifting the 8×8 block to the right by four pixels (block shift right), down by 

four pixels (block shift down), and diagonal by four pixels (block shift diagonal). The last 

arrangement of the DCT coefficients are sets of neighboring coefficients within an 8×8 

DCT block for a DCT coefficient of interest. 

 

3.1.2.1 Frequency and Directional Coefficient Vectors 

 

The 8×8 coefficient values are represented as ( ),bd u v where u = v = 1,…,8, b = 1,…,B, 

where B is the number of 8×8 blocks within a color layer of an image. The zig-zag 

pattern shown in Figure 3.3a is used to translate the 8×8 matrix into a vector. The vector 

is represented as ˆ
ˆb

k
d , k̂  = 1,…,64, and the locations of k̂ are shown in Figure 3.4.  
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1 2 6 7 15 16 28 29  1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43  3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44  4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54  10 12 19 25 32 41 45 54

11 20 24 33 40 46 53 55  11 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61  21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62  22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64  36 37 49 50 58 59 63 64

a)  b) 
1 2 6 7 15 16 28 29  1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43  3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44  4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54  10 12 19 25 32 41 45 54

11 20 24 33 40 46 53 55  11 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61  21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62  22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64  36 37 49 50 58 59 63 64

c)  d) 
Figure 3.4. DCT Coefficient Locations and Separations a) DCT Coefficient Location 

after Zig-Zag Scan b) Coefficient Locations of Vertical, Diagonal and Horizontal  

directions c) Coefficient Locations of Low, Mid and High Frequencies d) 8×8 block 

Coefficient Separation of both frequencies and directions. 
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The coefficient vector indices from the zig-zag method are shown in Figure 3.4a. The DC 

coefficient is at location 1 and locations 2 through 64 are the AC coefficients. Figure 3.4b 

shows the separations of vertical (red), diagonal (green) and horizontal (blue) DCT 

decompositions. The remaining coefficients correspond to the high frequencies and are 

normally zero due to the quantization compression of the JPEG method. For a typical 

compression of JPEG images the high frequencies correspond to the black cells in Figure 

3.4c. The DCT decompositions of low (white), medium (gray) and high (black) 

frequencies coefficients are shown in Figure 3.4c. In this research the coefficients will be 

decomposed as shown in Figure 3.4d. As shown in Figure 3.4d the 8×8 block is divided 

into eight DCT decompositions represented by both the frequency distributions and 

directions.  

 

The coefficients are arranged as follows: 

• The combination of vertical and low frequencies (VL) is shown as red in Figure 

3.4d. The vector ˆb
VLd contains the DCT coefficients of block b after the zig-zag 

scan at locations 2, 6, 7 and 8 such that the vector ( )ˆ | 1, ,b
VL VLD d b B= = … . 

• The diagonal and low frequencies (DL) are shown as green in Figure 3.4d. The 

vector ˆb
DLd contains the DCT coefficients of block b at locations 5 and 13 such 

that ( )ˆ | 1, ,b
DL DLD d b B= = … .  

• The horizontal and low frequencies (HL) are shown as blue in Figure 3.4 d. The 

vector ˆb
HLd contains the DCT coefficients of block b at locations 3, 4, 9 and 10 

such that ( )ˆ | 1, ,b
HL HLD d b B= = … .  

• The vertical and mid frequencies (VM) are shown as dark red in Figure 3.4d. The 

vector ˆb
VMd contains the DCT coefficients of block b after the zig-zag scan at 

locations 14, 15, 16, 17, 27, 28, 30, and 31 such that  ( )ˆ | 1, ,b
VM VMD d b B= = … .  
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• The diagonal and mid frequencies (DM) are shown as dark green in Figure 3.4d. 

The vector ˆb
DMd contains the DCT coefficients of block b after the zig-zag scan at 

locations 18, 19, 24, 25, 26, 32, 33, 39, 40 and 41 such that  

( )ˆ | 1, ,b
DM DMD d b B= = … . 

• The horizontal and mid frequencies (HM) are shown as dark blue in Figure 3.4d. 

The vector ˆb
HMd contains the DCT coefficients of block b after the zig-zag scan at 

locations 11, 12, 20, 21, 22, 23, 34 and 35 such that ( )ˆ | 1, ,b
HM HMD d b B= = … .  

The remaining coefficients of Figure 3.4d shown in black are not analyzed with the 

decomposition since during JPEG compression they are often zero valued and typically 

not used to hide a stego message (Fridrich, 2004). 

 

3.1.2.2 Block Shifted Coefficient Vectors 

 

In this subsection the individual 8×8 blocks of an input JPEG image are shifted in the 

spatial domain and recompressed using the JPEG compression technique. Three shifting 

techniques are used, shifting to the right, down and right and down each by four pixels. 

The coefficients from the shifted blocks are placed in vectors as in subsection 3.1.2.1.  

 

The first set of shifted coefficients focuses on shifting the pixel values to the right by four 

pixels in the spatial domain as shown in Figure 3.5.  
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Figure 3.5. Original block and right shifted pixel locations 

 

The original block containing the spatial domain pixels is transformed using the JPEG 

compression properties, e.g., the same quantization table used in compression. The last 

column of blocks has no neighboring blocks so the final four columns of pixels in the 

image are duplicated to ensure B shifted blocks exist.   

 

Using the same vector representation of the DCT coefficients as in subsection 3.1.2.1 for 

the right shifted blocks results in the following vector representations: 

• The combination of vertical and low frequencies (VL) results in a vector ,ˆb
VL Rights  

containing the DCT coefficients of block b after the zig-zag scan at locations 2, 6, 

7 and 8 such that the vector ( ), ,ˆ | 1, ,b
VL Right VL RightS s b B= = … . 

• The diagonal and low frequencies (DL) result in a vector ,ˆb
DL Rights  containing the 

DCT coefficients of block b at locations 5 and 13 such that 

( ), ,ˆ | 1, ,b
DL Right DL RightS s b B= = … .  
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• The horizontal and low frequencies (HL) result in a vector ,ˆb
HL Rights  containing the 

DCT coefficients of block b at locations 3, 4, 9 and 10 such that 

( ), ,ˆ | 1, ,b
HL Right HL RightS s b B= = … .  

• The vertical and mid frequencies (VM) result in a vector ,ˆb
VM Rights  containing the 

DCT coefficients of block b after the zig-zag scan at locations 14, 15, 16, 17, 27, 

28, 30, and 31 such that ( ), ,ˆ | 1, ,b
VM Right VM RightS s b B= = … .  

• The diagonal and mid frequencies (DM) result in a vector ,ˆb
DM Rights  containing the 

DCT coefficients of block b after the zig-zag scan at locations 18, 19, 24, 25, 26, 

32, 33, 39, 40 and 41 such that ( ), ,ˆ | 1, ,b
DM Right DM RightS s b B= = … . 

• The horizontal and mid frequencies (HM) result in a vector ,ˆb
HM Rights  containing 

the DCT coefficients of block b after the zig-zag scan at locations 11, 12, 20, 21, 

22, 23, 34 and 35 such that ( ), ,ˆ | 1, ,b
HM Right HM RightS s b B= = … .  

 

The second set of shifted coefficients focuses on shifting the pixel values down by four 

pixels in the spatial domain as shown in Figure 3.6. 
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Figure 3.6. Original block and down shifted pixel locations 

 

For this method the last row of blocks has no neighboring blocks so the final four rows of 

pixels in the image are duplicated to ensure B shifted blocks exist.   

 

The down shifted blocks results in the following vector representations: 

• The combination of vertical and low frequencies (VL) results in a vector ,ˆb
VL Downs  

containing the DCT coefficients of block b after the zig-zag scan at locations 2, 6, 

7 and 8 such that the vector ( ), ,ˆ | 1, ,b
VL Down VL DownS s b B= = … . 

• The diagonal and low frequencies (DL) result in a vector ,ˆb
DL Downs  containing the 

DCT coefficients of block b at locations 5 and 13 such that 

( ), ,ˆ | 1, ,b
DL Down DL DownS s b B= = … .  
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• The horizontal and low frequencies (HL) result in a vector ,ˆb
HL Downs  containing the 

DCT coefficients of block b at locations 3, 4, 9 and 10 such that 

( ), ,ˆ | 1, ,b
HL Down HL DownS s b B= = … .  

• The vertical and mid frequencies (VM) result in a vector ,ˆb
VM Downs containing the 

DCT coefficients of block b after the zig-zag scan at locations 14, 15, 16, 17, 27, 

28, 30, and 31 such that ( ), ,ˆ | 1, ,b
VM Down VM DownS s b B= = … .  

• The diagonal and mid frequencies (DM) result in a vector ,ˆb
DM Downs  containing the 

DCT coefficients of block b after the zig-zag scan at locations 18, 19, 24, 25, 26, 

32, 33, 39, 40 and 41 such that ( ), ,ˆ | 1, ,b
DM Down DM DownS s b B= = … . 

• The horizontal and mid frequencies (HM) result in a vector ,ˆb
HM Downs  containing 

the DCT coefficients of block b after the zig-zag scan at locations 11, 12, 20, 21, 

22, 23, 34 and 35 such that ( ), ,ˆ | 1, ,b
HM Down HM DownS s b B= = … .  

 

The third set of shifted coefficients focuses on shifting the pixel values to the right by 

four pixels and down by four pixels in the spatial domain as shown in Figure 3.7. 
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Figure 3.7. Original block and diagonal shifted pixel locations. 

 

Shifting the blocks diagonally, the last row and column of blocks have no neighboring 

blocks so the final four rows and the final four columns of pixels in the image are 

duplicated to ensure B diagonally shifted blocks exist. 

 

The diagonally shifted blocks results in the following vector representations: 

• The combination of vertical and low frequencies (VL) results in a vector ,ˆb
VL Diags  

containing the DCT coefficients of block b after the zig-zag scan at locations 2, 6, 

7 and 8 such that the vector ( ), ,ˆ | 1, ,b
VL Diag VL DiagS s b B= = … . 

• The diagonal and low frequencies (DL) result in a vector ,ˆb
DL Diags  containing the 

DCT coefficients of block b at locations 5 and 13 such that 

( ), ,ˆ | 1, ,b
DL Diag DL DiagS s b B= = … .  
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• The horizontal and low frequencies (HL) result in a vector ,ˆb
HL Diags  containing the 

DCT coefficients of block b at locations 3, 4, 9 and 10 such that 

( ), ,ˆ | 1, ,b
HL Diag HL DiagS s b B= = … .  

• The vertical and mid frequencies (VM) result in a vector ,ˆb
VM Diags  containing the 

DCT coefficients of block b after the zig-zag scan at locations 14, 15, 16, 17, 27, 

28, 30, and 31 such that ( ), ,ˆ | 1, ,b
VM Diag VM DiagS s b B= = … .  

• The diagonal and mid frequencies (DM) result in a vector ,ˆb
DM Diags  containing the 

DCT coefficients of block b after the zig-zag scan at locations 18, 19, 24, 25, 26, 

32, 33, 39, 40 and 41 such that ( ), ,ˆ | 1, ,b
DM Diag DM DiagS s b B= = … . 

• The horizontal and mid frequencies (HM) result in a vector ,ˆb
HM Diags  containing the 

DCT coefficients of block b after the zig-zag scan at locations 11, 12, 20, 21, 22, 

23, 34 and 35 such that ( ), ,ˆ | 1, ,b
HM Diag HM DiagS s b B= = … .  

 

3.1.2.3 Neighboring Coefficient Matrices 

 

Each DCT coefficient has a corresponding vector of neighboring coefficients. For a 

coefficient of interest in an 8×8 block, the neighboring coefficients are defined as its 

surrounding coefficients. The six vectors representing the directional and frequency 

coefficients described in subsection 3.1.2.1 each have a matrix of neighboring 

coefficients.  

 

The vectors and matrices of neighboring coefficients are as follows: 

• For the vertical directions and low frequencies vector ˆb
VLd when VL = 2 the 

coefficient at location 2
ˆbd has corresponding neighboring coefficients 1, 6, 7, 8 and 
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14 represented by the vector 2,ˆ
VL

b
kn  = [1 6 7 8 14], kVL = 1,…,5. The matrix of 

neighboring coefficients for ˆb
VLd is as follows: 

( )
2,

6,
, ,

7,

8,

1 6 7 8 14
2 7 14 15 17

such that | 1, ,
6 15 16 17 27
5 14 17 18 26

VL

VL

VL VL

VL

VL

b
k

b
kb b

VL k VL VL kb
k

b
k

n

n
n N n b B

n

n

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

…  

• The matrix of neighboring coefficients for the horizontal directions and low 

frequencies vector ˆb
DLd are represented as follows: 

( )5,
, ,

13,

1 8 9 13 25
such that | 1, ,

5 18 19 25 40
DL

DL DL

DL

b
kb b

DL k DL DL kb
k

n
n N n b B

n

⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦
…   

• The matrix of neighboring coefficients for the horizontal directions and low 

frequencies vector ˆb
HLd are represented as follows: 

( )
3,

4,
, ,

9,

10,

1 4 9 10 12
3 10 11 12 20

such that | 1, ,
5 12 19 20 24
4 11 20 21 23

HL

HL

HL HL

HL

HL

b
k

b
kb b

HL k HL HL kb
k

b
k

n

n
n N n b B

n

n

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

…  

• The matrix of neighboring coefficients for the vertical directions and the medium 

frequencies vector ˆb
VMd are represented as follows: 

14,

15,

16,
,

17,

27,

31,

,

5 8 17 18 26 27 31
6 7 16 17 27 28 30
7 15 27 28 29 30 43
8 14 26 27 30 31 42

14 17 30 31 42 43 44
18 26 41 42 44 45 54

such that |

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

=

VM

VM

VM

VM

VM

VM

VM

VM

b
k

b
k

b
kb

VM k b
k

b
k

b
k

b
VM VM k

n

n

n
n

n

n

n

N n( )1, ,= …b B
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• The matrix of neighboring coefficients for the horizontal directions and medium 

frequencies vector ˆb
DMd are represented as follows: 

18,

19,

24,

25,

26,
,

32,

33,

39,

40,

41,

2 8 25 26 32 40 41 46
3 9 24 25 33 39 40 47
4 12 33 34 39 47 48 51
5 13 32 33 40 46 47 52
6 14 31 32 41 45 46 53
8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

DM

DM

DM

DM

DM

DM

DM

DM

DM

DM

DM

b
k

b
k

b
k

b
k

b
kb

DM k b
k

b
k

b
k

b
k

b
k

n

n

n

n

n
n

n

n

n

n

n

( ),

18 41 40 46 52 53 56
9 19 39 40 47 51 52 57

12 24 47 48 51 57 58 59
13 25 46 47 52 56 57 60
14 26 45 46 53 55 56 61

such that | 1, ,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= = …
DM

b
DM DM kN n b B

 

• The matrix of neighboring coefficients for the horizontal directions and medium 

frequencies vector ˆb
HMd are represented as follows: 

11,

12,

20,
,

21,

23,

34,

,

4 10 20 21 23 22 35
5 9 19 20 23 24 34
9 12 23 24 34 35 38

10 11 22 23 35 36 37
12 20 34 35 37 38 49
19 24 38 39 48 49 50

such that 

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

=

HM

HM

HM

HM

HM

HM

HM

HM

b
k

b
k

b
kb

HM k b
k

b
k

b
k

HM HM k

n
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n
n

n

n

n

N n( )| 1, ,= …b b B

 

  

The arrangement of the coefficients into the vectors D, SRight, SDown, SDiag along with the 

matrices N will be used to calculate the metrics in the next sect and used to calculate 

statistics necessary for generating the features. 
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3.1.3 Metrics Calculation 

 

In this subsection two metrics used to compare coefficients are described. The first is a 

difference calculation that compares DCT coefficients with neighboring coefficients. The 

second metric is a least square linear regression metric that uses DCT coefficients, shifted 

coefficients and neighboring coefficients to calculate weights used in the regression 

model. 

 

3.1.3.1 Mean Difference between DCT Coefficients and Neighboring Coefficients 

 

The mean difference metric between the DCT coefficients in subsection 3.1.2.1 and the 

neighboring coefficients from subsection 3.1.2.3 are described in this subsection. Vectors 

are generated for the three directions and the frequencies.  

 

The mean differences are calculated as follows: 

• Vertical direction and low frequencies 

( ) ( )
5

,
1

1 ˆ such that | 1, ,
5 VL

VL

b b b b
VL VL VL k VL VL

k

d d n D d b B
=

= − = =∑ …                     (3.1) 

• Diagonal direction and low frequencies 

( ) ( )
5

,
1

1 ˆ such that | 1, ,
5 DL

DL

b b b b
DL DL DL k DL DL

k

d d n D d b B
=

= − = =∑ …                  (3.2) 

• Horizontal direction and low frequencies 

( ) ( )
5

,
1

1 ˆ such that | 1, ,
5 HL

HL

b b b b
HL HL HL k HL HL

k

d d n D d b B
=

= − = =∑ …                  (3.3) 

• Vertical direction and medium frequencies 

( ) ( )
7

,
1

1 ˆ such that | 1, ,
7 VM

VM

b b b b
VM VM VM k VM VM

k

d d n D d b B
=

= − = =∑ …              (3.4) 

• Diagonal direction and medium frequencies 
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( ) ( )
8

,
1

1 ˆ such that | 1, ,
8 DM

DM

b b b b
DM DM DM k DM DM

k

d d n D d b B
=

= − = =∑ …           (3.5) 

• Horizontal direction and medium frequencies 

( ) ( )
7

,
1

1 ˆ such that | 1, ,
7 HM

HM

b b b b
HM HM HM k HM HM

k

d d n D d b B
=

= − = =∑ …           (3.6) 

 

 

3.1.3.2 Least Squares Linear Regression 

 

Regression analysis is used to assess the relationship between dependent variables and 

one or more independent variables. The independent variables are known as predictor 

variables. To avoid confusion in this chapter, the independent variables are the 

neighboring and shifted coefficients while the predictor variables are the DCT 

coefficients. The coefficients in this section are used to calculate the least square linear 

regression metric (Legendre, 1805, Gauss, 1809, pp. 205-224; Davis, 1809/1857, pp. 

249-273; Dillon and Goldstein, 1984, pp. 209-250; Draper and Smith, 1998; Neter et al., 

1996). The idea is to predict the mean value of the dependent variables (in this case DCT 

coefficients) on the basis of the fixed neighboring coefficients and shifted coefficients. 

The regression model with multiple variables in N is written as    

 

0 1 1 2 2D̂ N Nβ β β= + + +                                                  (3.7) 
 

where β0 is referred to as the intercept coefficient and the remaining β’s are the slope 

coefficients which gives the change in D with respect to N. Theβ’s are calculated as 

 

( ) 1T TN N N Dβ
−

=                                                  (3.8) 
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The intercept coefficient β0 in Equation (3.7) cannot be calculated using Equation (3.8) 

for D and N. To solve this problem a column vector of 1’s is added to the front of the 

matrix N. The column of 1’s allows the regression model to contain the term β0. If the β0 

term is omitted from the regression model, the response of the model is zero when all of 

the predictor variables are zero. In a straight line regression model the line has a zero 

intercept when β0 = 0 resulting in a poor model (Draper and Smith, 1998).  

 

The vectors for the regression metric in this subsection for the three directions and 

frequencies are calculated as follows:  

• Vertical direction and low frequencies 

( )
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

VL VL VL Right VL Down VL Diag

T T
VL VL VL VL VL

VL VL VL

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

 

• Diagonal direction and low frequencies 

( )
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

DL DL DL Right DL Down DL Diag

T T
DL DL DL DL DL

DL DL DL

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

 

• Horizontal direction and low frequencies 

( )
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

HL HL HL Right HL Down HL Diag

T T
HL HL HL HL HL

HL HL HL

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

 

• Vertical direction and medium frequencies 

( )
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

VM VM VM Right VM Down VM Diag

T T
VM VM VM VM VM

VM VM VM

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=
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• Diagonal direction and medium frequencies 

( )
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

DM DM DM Right DM Down DM Diag

T T
DM DM DM DM DM

DM DM DM

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

 

• Horizontal direction and medium frequencies 

( )
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

HM HM HM Right HM Down HM Diag

T T
HM HM HM HM HM

HM HM HM

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

 

 

For each of the coefficients investigated in D a set of neighboring coefficients were 

selected based on experimental analysis and an understanding of both JPEG compression 

and how the embedding methods alter the coefficients. Determining the number of 

neighboring coefficients can be expanded to sequential selection used in regression, e.g., 

backward selection, forward selection and stepwise selection (Dillon and Goldstein, 

1984).   

 

3.1.4 Statistics Calculation 

 

By using the metrics derived from the previous subsection, the statistics are calculated 

over the vectors in subsection 3.1.2 and 3.1.3 in order to generate the features. Table 3.1 

lists five statistics: mean, standard deviation, skewness, kurtosis, and entropy along with 

their calculation.  
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Table 3.1. Test statistics for generating features. 
Test Statistic Statistical Function F(⋅) 

Mean  ( ) ( )
1

1 n

i
i

F D D D
nμ μ

=

= = ∑  

Standard Deviation ( ) ( ) ( )( )
1/ 2

2

1

1 n

i
i

F D D D D
nσ σ μ

=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

∑  

Skewness ( ) ( )
( )( )

( )

3

1
3

n

i
i

D D
F D D

Dγ

μ
γ

σ
=

−
= =

∑
 

Kurtosis ( ) ( )
( )( )

( )

4

1
4

n

i
i

D D
F D D

Dκ

μ
κ

σ
=

−
= =

∑
 

Entropy ( ) ( ) ( ) ( )
1

= log
n

E i i
i

F D E D D D
=

= − ∑  

 

3.1.5 Features  

 

The new feature generation method produces a total of 180 features for an input image. 

By taking the differences between the calculated statistics, the number of features in the 

following is dependent on the DCT decomposition and the selected coefficients as 

described in subsection 3.1.2 through 3.1.4. D includes the coefficient vectors in 3.1.2.1, 

D̂  is the regression model described in 3.1.3.2, D  are the mean differences in 3.1.3.1, 

N  contains the average of the neighboring coefficients in 3.1.2.3, SRight, SDown and SDiag 

are block shifted coefficient vectors in 3.1.2.2, and the statistical calculation functions F(⋅) 

are described in 3.1.4. 

 

( ) ( )ˆF D F D−  generates 30 features 

( ) ( )F D F D−  generates 30 features 

( ) ( )−F D F N  generates 30 features 

( ) ( )RightF D F S−  generates 30 features 
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( ) ( )DownF D F S−  generates 30 features 

( ) ( )DiagF D F S−  generates 30 features 

 

These are denoted as raw features. The three detection systems which are going to be 

described in the following sections consider these features as inputs in order to achieve 

the goal in this research.  

 

3.2 Feature Ranking/Selection 

 

The previous section presents a feature generation method that results in 180 features that 

identify the difference between clean and stego images. Some of these features separate 

the clean from stego images better than others. In this section a new feature ranking 

method for two-class kernel Fisher’s discriminant and support vector machines classifiers 

is described that identifies the best features to use for accurate classification (Rodriguez 

et al., 2008a). 

 

3.2.1 SVM-Kernel Feature Ranking (KFR) 

 

SVM-KFR consists of a three-step feature ranking strategy to choose representative 

features and remove noisy features for a data set with multiple features. The first step is 

to remove one feature at a time from the training data set. Specifically remove feature m 

from xi denoted as xi
(m), where (m) indicates the removed feature m. The second step is to 

solve Equation (2.70) to identify the support vectors, xk, and the non-negative alpha 

vectors, Ĉ ≥ αi ≥ 0. Once the support vectors are identified the kernel matrix is 

calculated as: 

 
( ) ( )( ) ( ) ( ), ,=x x x xm m m
k j k jK K .                                                   (3.18) 
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The final step multiplies the kernel matrix with the m feature removed, ( ) ( ),x xm
k jK  by 

the alpha vectors, α(m), and associated class labels y. By rewriting Equation (2.71) the 

multiplication results in the following solution: 

 

( )( ) ( ) ( )( )

1
,α

=

= +∑x x x
s

m m m
j k k k j

k
f y K b .                                   (3.19) 

 

This projection results in approximated class labels without the bias shown in Equation 

(2.70). In the event a feature with strong class separability is removed an incorrect 

estimate results. As an example, consider a nonlinearly separable set of 50 samples with 

100 features and equal number of classes. Figure 3.8 shows the mixture of classes when a 

strongly separating feature is removed. The x-axis in Figure 3.8 represents the index, j, of 

sample ( )x m
j  and the y-axis represents the predicted class value, ( )( ) ,x m

jf for each sample 

after calculating Equation (3.19) where the alpha values are in the range of ( )0 6α≤ ≤m
k .  

The range is determined by the upper bound Ĉ when solving Equation (2.70).  
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Figure 3.8. One dimensional mapping of Equation (3.19) when the strong ranked feature 

is removed. 

 

On the other hand if a noise-like feature in class separability is removed the two classes 

show a separation. Figure 3.9 shows the result of removing a weak ranked feature.  
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Figure 3.9. One dimensional mapping of Equation (3.19) when the weak ranked feature is 

removed.  

 

For ranking purposes, the projection of the samples ( )( )x m
jf  is summed. The problem 

arises when positive and negative values are summed resulting in potential cancelation of 

the results. Because of this, the labels yi in Equation (3.19) are excluded from the 

decision function as  

 

( )( ) ( ) ( ) ( )( )( )

1
,

s
m m m mm
j k k j

k
f K bα

=

= +∑x x x .                                    (3.20) 

 

The solution for the ranking can be defined as the summation of Equation (3.20) resulting 

in a ranking value for feature m as follows: 

 

( ) ( ) ( )( )( )

1 1

  ,
s s

m m mm
m k k j

j k

R K bα
= =

= +∑∑ x x                                     (3.21) 
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where ( )m
kα contains the weights for the support vectors. It is important to note that only 

the support vectors are used to calculate K(m) during the ranking process implying that 
( ) ( )m m
k j=x x . A normalizing factor of 1/  can be applied to the ranking values Rm for the 

feature ranking criterion but is not required. The algorithm of this method is provided as 

follows: 

1. For each of the n features perform steps 2, 3 and 4. 

2. Remove the current feature m from the data set xi and train the SVM model, 

extracting the α-vectors and the support vectors xk. 

3. Calculate K(m) using the support vectors xk. from step 2 

4. Assign a ranking value Rm according to Equation (3.21) and replace the feature m. 

5. After completion of the loop, sort the ranking values Rm in descending order.  

6. Select the r highest ranked features for training the SVM classification model. 

 

Equation (3.20) estimates the effect of the optimization solution in Equation (2.70) by 

removing one feature at a time. The summation of the mapping ( ) ( ) ( )( )( ) ,m m mm
k k jKα x x  in 

Equation (3.21) seeks to maximize the distance between classes, C = {-1, +1}. To explain 

the mathematical representation of the ranking criterion in Equation (3.21), it is necessary 

to re-examine f(x) from Equation (2.71) which denotes the solution for classification 

determined by the values of the vector α and the bias b at a particular stage of the 

learning. Letting  

 

( ) ( )
1

,
s

j j j k k k j j
k

E f y y K b yα
=

⎛ ⎞
= − = + −⎜ ⎟

⎝ ⎠
∑x x x                             (3.22) 
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be the error difference between the function output and the target value (Cristianini and 

Shawe-Taylor, 2000) on the training data x, it is possible to show the relationship 

between Equations (2.71) and (3.21). For an ideal case the desired value of Ei would be 0. 

The goal is to retain the features that approximate the sum as follows 

 

( ) ( ) ( )( )( )

1 1
,

s s
m m mm

k k j j j
j k

K b yα
= =

⎛ ⎞
+ ≈⎜ ⎟

⎝ ⎠
∑ ∑ ∑x x                                  (3.23) 

 

Setting the ideal situation of Ej equal to 0 the following equation is used 

 

( )
1

, 0
s

j k k k j j
k

E y K b yα
=

⎛ ⎞
= + − =⎜ ⎟

⎝ ⎠
∑ x x                                    (3.24) 

 

where 1,...,j = . Using the absolute values of yk and yi results in the following equation: 

 

( ) ( ) ( )( )( )

1 1
,

s s
m m mm

k k j jj
j k

K b yα
= =

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑ ∑ ∑x x                                  (3.25) 

 

which is similar to Equation (3.23). When a feature is removed, a larger ranking indicates 

a prediction farther away from the true class, yi. The Rm criterion allows a view of how 

well the SVM model separates the space in the absence of the removed feature.  

 

Figures 3.10 and 3.11 show the values of the decision function ( )( )x m
jf  when the highest 

and lowest ranked features are removed. The axes of Figure 3.10 and 3.11 represent the 

index of sample ( )m
jx  on the x-axis and the y-axis represents the value of the sample after 

calculating Equation (3.21). In Figure 3.10 the top ranked feature is removed showing the 
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space between 0 and 6. When Equation (3.21) is calculated this results in a large ranking 

value.  

 

 
Figure 3.10. One dimensional mapping of Equation (3.20) when the highest ranked 

feature is removed.  

 

In Figure 3.11 the lowest ranked feature is removed showing the space converging on 1. 

This will result in a ranking value approximately equal to jy  indicating a low ranking.   
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Figure 3.11. One dimensional mapping of Equation (3.20) when the lowest ranked 

feature is removed. 

 

While the space is not perfectly separated in Figure 3.10 and 3.11, the reader should be 

aware of the fact that the figures do not show a mapping of ( ) ( )( ) ,α +x xm m
k k jK b with the 

top ranked features. The two figures are shown to give an insight of the effects a removed 

feature has on the mapping from the input space to the ranking space using Equation 

(3.21). 

 

In Figure 3.12 the top 25% of the ranked features are kept. In this simple example Figure 

3.12 shows that maintaining the top ranked features the error function in Equation (3.22) 

can be trained to zero.   
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Figure 3.12. One dimensional mapping of Equation (3.19) when the top 25% of the 

ranked features are kept. 

 

This method takes advantage of the classification decision function Equation (2.71). The 

simplicity of this method makes it ideal for inclusion in most kernel based classifiers with 

decision function similar to Equation (2.71). In the next subsection this ranking method is 

applied to the kernel Fisher’s discriminant classifier. 

 

3.2.2 Kernel Fisher’s Discriminant Classifier Kernel Feature Ranking (KF-KFR) 

 

The same application in Section 3.2 can be extended to ranking features for the KFD 

classifier. The first step is to calculate the initial alpha vectors as follows: 

 

( )
( ) ( )

( )
1 1
m m

m
m

M M
Nμ

α − +−
=                                                   (3.26) 
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where  

 

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1

1
11

1
11

1 ,

1 ,

−

−

+

+

−
=−
∈

+
=+
∈

=

=

∑

∑

x x

x x

m m
i j

j
j C

m m
i j

j
j C

M K

M K
                                 (3.27) 

 

and 

 

( ) ( ) ( ) ( ) ( )
1

1, ,
=
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
Tm m m

i j i j
j
j

N K I K
                     

(3.28) 

 

where C = {C-1,C+1} = {-1,+1}. Mika, et al. (1999) discuss Numerical issues and 

Regularization regarding the calculation of Equation (3.28). This is resolved by simply 

adding a multiple of the identity matrix to N defined as: 

 
( ) ( )m mN N Iμ μ= +                                                     (3.29) 

 

The next step is to use the alpha vectors and the kernel matrix to project the n-1 

dimensional input feature space into a one dimensional space as follows:  

 
( ) ( ) ( )x̂ , α= x xm m

i jK .                                               (3.30) 

 

The projection in Equation (3.30) now becomes the space that is to be solved using an 

optimization solution. Mika, et al. (1999) use the Matlab Optimization Toolbox (Matlab, 

2007) to solve the optimization problem with the projected space calculated in Equation 

(3.30). For the interested reader the optimization problem is described in detail on pp. 

460-462 of (Scholkopf and Smola, 2002). In this paper the one dimensional SMO (Franc 
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and Hlavac, 2007) is used as the optimization solution. This results in the non-negative 

alpha vectors ( )1ˆ ˆ ˆ,...,iα α α= with an upper bound Ĉ, ˆ ˆ 0α≥ ≥C . The support vectors for 

the KFD trained model are xk = xi and the decision function of the KFD classifier is 

written as sign(f(x)) where f(x) is defined by: 

 

( ) ( ) ( )
1

ˆ ,i i i
i

f b y K bφ α
=

= + = +∑x w x x x .                                  (3.31) 

 

The bias b is calculated by obtaining the average as in Equation (2.65). The final step is 

to rewrite Equation (3.21) to calculate the ranking values as follows: 

 

( ) ( )( )

1 1

ˆ  ,α
= =

= +∑∑ x xm m
m i i j

j i

R K b .                                    (3.32) 

 

The algorithm for the kernel Fisher’s feature ranking method is as follows: 

1. For each of the n features perform steps 2, 3 and 4. 

2. Remove the current feature m from the data set xi training the KFD model using 

Equations (3.26) through (3.30) to obtain the alpha vectors, support vectors and 

bias. 

3. Assign a ranking value Rm according to Equation (3.32) and replace the feature m. 

4. After completion of the loop, sort the ranking values Rm in descending order.  

5. Select the r highest ranked features for training the final KFD classification model. 

 

The procedure is conducted for each feature and ranked in descending order where the 

largest value corresponds to the feature of most importance. It should be noted that the 

calculation of the alpha weights in Equation (3.26) is an important step when ranking the 

features.  
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3.3 Learning Decision Trees using Kernel mapping for creating Multi-class 

Classification from two-class KFD and SVM Classifiers 

 

In this section a multi-class tree structure for performing multi-class classification with 

two-class KFD and SVM classifiers is described. The structure and learning of the tree is 

known as a learning decision tree (Russell and Norvig, 2003). Designing the structure of 

the tree, at each node a distance measure in the kernel space is calculated between three 

or more classes. A branch connects two nodes within the tree. Branches are added from 

each node, known as a parent node, so long as more than one class remains. A leaf node 

from a parent node specifies the class value when a single class is reached, that is, a node 

with no successor in the tree. The depth of the tree is determined by the number of nodes 

along a path from the top parent node to a leaf node. For example, Figure 3.13 shows the 

tree structure for a ten-class problem where the labels represent the individual classes, 1 = 

Clean, 2 = F5, 3 = JP Hide, 4 = JSteg, 5 = Model-based, 6 = Model-based Ver. 1.2, 7 = 

OutGuess, 8 = Steganos, 9 = StegHide, 10 - UTSA.  

 

 
Figure 3.13. Decision tree for a 10-class classification problem with 10 leaf nodes, 9 

parent nodes and a maximum depth of 6. 

 

The top node labeled with [1 2 3 4 5 6 7 8 9 10] is at the first level of the tree and the 

parent node of nodes labeled as [1 2 3 4 5 6 8] and [7 9 10]. The leaf nodes from left to 

right in this tree are label as [1], [2], [3], [4], [5], [6], [8], [7], [9] and [10]. This tree has a 
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maximum depth of 6 which is the path from the parent node [1 2 3 4 5 6 7 8 9 10] to [5] 

or [6].  

 

For this problem there are several steps in learning the tree. The first step is to map the 

input training set xi = [x1, x2,…,x ] ∈ n , i = 1,…, , φ(xi): X→F from input space into a 

potential higher dimensional space F ∈  called kernel space. The mapping φ(xi) is 

represented by a kernel function K(xi, xj) that defines an inner product in . Each sample 

in the training set contains one target value yi ∈ C = [C1,C2,…,Cc], i = 1,2,…, . which 

describes the class to which the sample is a member of. The parameters for calculating 

the kernel matrix are important when training the tree and the two-class classifiers at each 

node. The kernels used in this research are as follows 

1. linear: ( ), =x x x xT
i j i jK  

2. polynomial: ( ) ( ), , 0γ γ= + >x x x x
dT

i j i jK r  

3. radial basis function (RBF): ( ) ( ) 2

2

1, , 0
2

γ
γ

σ

⎛ ⎞− −⎜ ⎟
⎝ ⎠= = >

x x
x x

i j

i jK e  

4. sigmoid: ( ) ( ), tanh γ= +x x x xT
i j i jK r  

where, γ, r, and d are kernel parameters. 

 

The distance measure used in this section is an expansion of the KFD (Mika et al., 1999). 

The second step is to calculate the initial alpha vectors for a multi-class problem. The 

alpha vectors are defined as follows: 

 

ˆ
μ

α =
M
N

                                                       (3.33) 
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where  

 

( ) ( )

( )

1

1 2

1

1
1 / 2

1 ,

−

= =

=
∈

= −
−⎡ ⎤⎣ ⎦

=

∑∑

∑ x x

p q

Ck

k

k
k

c c

C C
p q

C i j
jC
j C

M M M
c c

M K
                                 (3.34) 

 

and 

 

( ) ( )
1

1, ,

μ μ

=
∈

= +

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
T

i j i j
j
j

N N I

N K I K                               
(3.35) 

 

The regularization value μ must be large enough so that the ( ) 1

μ

−
N is positive definite 

(Mika et al., 1999). The next step is to use the alpha vectors and the kernel matrix to 

project the input feature space into a one dimensional space as follows:  

 

( ) ˆˆ ,i i jK α=x x x                                                   (3.36) 

 

where x̂ is an [  × 1] vector. Now the individual class distance can be calculated as 

 

1

1ˆ ˆ
=
∈

= ∑ x
Ck

k

k
k

C i
iC
i C

D
  
                           (3.37) 

 

The distance vector ˆ
kCD is of length c. Once the distance vectors are calculated, the next 

step is to taking the average of ˆ
kCD which provides a separation point between classes 
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when Ck > 2. For example the top node in Figure 3.13 contains classes [1 2 … 10] and the 

classes are divided into two branches. The left branch contains classes [1 2 3 4 5 6 8] 

while the right branch contains classes [7 9 10]. Figure 3.14 is the corresponding figure to 

Figure 3.13 which contains the 10 classes totaling 1000 samples as shown on the x-axis 

and the sample values on the y-axis. The distance values of ˆ
kCD  are shown within the 

figure as well. Taking the average of ˆ
kCD is -5.0313 which is the value used to separate 

the ten classes into two sub classes.   

 

 

Figure 3.14. Distance values ˆ
kCD for a 10 class problem. 

 

Once a new branch with more than two-classes is built the distance measure is calculated 

again. The nodes of the tree are expanded from left to right until a leaf node is reached. 
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Consider the node labeled as [2 3], this node will contain two leaf nodes labeled [2] and 

[3].  

 

The decision tree learning algorithm is shown as follows: 

1. Input training data xi with class labels, the kernel parameters and the classifier 

(KFD or SVM). 

2. If xi is empty return. 

3. Else if class labels of xi are all the same make a leaf node and return. 

4. Else if xi contains two-classes make two leaf nodes, a left and right, and return. 

5. Else if xi contains three-classes calculate the average distance for each class. 

6. Divide the input data into two classes creating two branches, a left and right. 

i. If the left Brach contains more than two classes step 1. 

ii. Else make a leaf node and go to step iii. 

iii. If the right branch contains more than two classes go to step 1. 

iv. Else make a leaf node and return.  

7. Return tree  

8. Train the two-class classifiers for each node of the tree.  

 

3.4 Fusion of Multi-Class Classification Systems 

 

In this section the fusion methods of the multi-class detection systems is covered. The 

class labels of the 8 multi-class detection systems are fused. In this research there are 10 

image classes, consisting of clean, F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), 

JSteg (Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 

(Sallee, 2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and 

UTSA (Agaian et al., 2006). The three fusion methods, AdaBoost (Bishop, 2006, pp. 

358), Bayesian Belief Networks (Murphy, 2001) and Probabilistic Neural Networks 

(Leap et al., 2007), used in this section were described in Chapter 2 Section 2.7. 
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3.4.1 AdaBoost Boosting 

 

In this sub section the 7 detection systems are fused using AdaBoost (Rodriguez and 

Peterson, 2008b). Each classification model is defined as Mk. The input training set is xi = 

[x1, x2,…,x ] ∈ n, with each sample in the training set contains one target value C = Ck 

= [C1,C2,…,Cc], k = 1,2,…,c, (known as the class labels yi ∈ C, i = 1,2,…, ). The 

method implemented in this research is from Bishop (2006, pp. 658). The method 

described by Bishop (2006) has three steps as follows 

 1. The data weighting coefficients {wi} are initialized as ( )1 1=iw for i = 1,…, . 

 2. For k = 1,…,7: 

  (a) Fit a classifier Mk(x) to the training data by minimizing the weighted  

  error function 

( ) ( )( )
1=

= ≠∑ xk
k i k i i

i
J w I M y  

  where ( )( )≠xk i iI M y  is the indicator function and equals 1 when Mk(xi)  

  ≠ yi and 0 otherwise.  

             

  (b) Evaluate the quantities 

( ) ( )( )
( )

1

1

ε =

=

≠
=

∑

∑

xk
i k i i

i
k

k
i

i

w I M y

w
 

  and then use these to evaluate  

1ln εα
ε

⎧ ⎫−
= ⎨ ⎬

⎩ ⎭
k

k
k

 

  (c) Update the data weighting coefficients 

( ) ( ) ( )( )1 α ≠+ = xk k i iI M yk k
i iw w e  
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 3. Making a prediction using the final trained model for an input image sample 

 { }0 , 5, , , , 1.2, , , ,∈x C F JPH JS MB MB OG STN SH UTSA is  given by 

( ) ( )
7

0 0
1
α

=

= ∑x xk k
k

f M  

 

3.4.2 Bayes Network for Model Averaging 

 

In this sub section the 7 detection systems are fused using a Bayesian network (Rodriguez 

et al., 2008b). Each classification model is defined as Mk as shown in Figure 3.15.  

 

 
Figure 3.15. Detection structure for 8 classification models. 

 

Table 3.2 shows the prior probabilities that a target T is a clean (C), F5, JP Hide (JPH), 

JSteg (JS), Model-based (MB), Model-based Version 1.2 (MB12), OutGuess (OG), 

Steganos (STN), StegHide (SH) and UTSA (UTSA) image.  

 

Table 3.2. Distribution of the image types. 
Target(T) 

T =  

C 

T = 

F5 

T = 

JPH 

T =  

JS 

T = 

MB 

T = 

MB1.2 

T = 

OG 

T = 

STN 

T = 

SH 

T = 

UTSA 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

For example an input image sample 

{ }0 , 5, , , , 1.2, , , ,∈x C F JPH JS MB MB OG STN SH UTSA as shown in Figure 3.15 fed into 

each of the trained classification detection systems will have a class label assigned from 

Input Image (x0) 

M4 M3 M2 M7 M6 M5 M1 
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each of the systems. So, to determine the probability that the class label is C when each 

of the models returns a class label as C the model averaging topology dictates a joint pdf 

as  

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6 7

1 2 3 4 5 6 7

, , , , , , , =P T M M M M M M M

P M T P M T P M T P M T P M T P M T P M T P T
 

 

The method used to facilitate the computations in the model averaging is Murphy’s 

(2001) Bayes Net Toolbox (BNT) for Matlab resulting in the following calculations. 

 

( )1 2 3 4 5 6 7" ", " ", " ", " ", " ", " ", " "= = = = = = = =P T C M C M C M C M C M C M C M C

( )
( )

( )

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

0 1 2 3 4 5 6

, " ", " ", " ", " ", " ", " ", " "
" ", " ", " ", " ", " ", " ", " "

, " ", " ", " ", " ", " ", " ", " "
, " ", " ", " ", " ", " ",

= = = = = = = =
=

= = = = = = =

= = = = = = = =
=

= = = = = =x

P T C M C M C M C M C M C M C M C
P M C M C M C M C M C M C M C

P T C M C M C M C M C M C M C M C
P T M C M C M C M C M C M( )

0

7" ", " "= =∑
x

C M C

 

Using Bayes’ Rule the numerator can be represented as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7P M C P M C P M C P M C P M C P M C P M C P T  

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

1 2 3 4

5 6 7

" " " " " " " "

" " " " " "

= = = = = = = = =

= = = = = = =

P M C T C P M C T C P M C T C P M C T C

P M C T C P M C T C P M C T C P T C  

and the denominator as 

( )
0

0 1 2 3 4 5 6 7, " ", " ", " ", " ", " ", " ", " "= = = = = = = =∑
x

xP T M C M C M C M C M C M C M C

( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ))
0

1 0 2 0 3 0 4 0

5 0 6 0 7 0 0

" " " " " " " "

" " " " " "

= = = = = = = = =

= = = = = = =

∑
x

x x x x

x x x x

P M C T P M C T P M C T P M C T

P M C T P M C T P M C T P T
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3.4.3 Probabilistic Neural Network (PNN) Fusion 

 

In this method the outputs of individual classification models are treated as input features 

to train the PNN fusion system. The key is to use the class labels from each of the 

systems as posterior probability estimates and employing them as features in the neural 

network. It should be noted that one of the posterior probabilities from the input classifier 

should be removed. For the seven individual ten-class classifiers used in this research 

each of the classification models, Mk, will contribute seven inputs for training the PNN.  

 

 
Figure 3.16. Probabilistic Neural Network Classification Structure.  
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3.5 Summary 

 

This chapter presented three new methods for improving multi-class detection systems 

for the kernel Fisher’s discriminant and support vector machines. The first method used 

in the system is the generation of features using the DCT for JPEG images. The major 

components of the new feature generation method are the decomposition of the DCT 

coefficients and the use four different predictors. The second new method consists of a 

new feature ranking method which uses the individual classifiers to rank the order of the 

features on class separability in the kernel space. The final method consists of a multi-

class tree which is expanded with the use of a distance measure between classes in the 

kernel space. In addition to the three new methods used in the development of multi-class 

classification for KFD and SVM is the fusion of multiple steganalysis systems. The 

fusion techniques used are based on modified implementation from AdaBoost (Bishop, 

2006), Bayesian networks (Murphy, 2001) and probabilistic neural networks (Leap et al., 

2007).  

 

Chapter 4 demonstrates results with an increase in classifier performance. The results 

shown compare an existing multi-class SVM classifier with the new methods shown in 

this chapter, feature selection, multi-class classifier and a modified simple fusion method.  
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IV. Analysis and Results 

 

The goal of the steganalysis classification system is to identify an input JPEG image as a 

clean image or identify the embedding algorithm used. The nine embedding algorithms 

tested over include F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), JSteg (Upham, 

1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 (Sallee, 2008a), 

OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) or UTSA (Agaian et 

al., 2006). This chapter compares the performance of the KFD and SVM multi-class 

system developed against four (i.e., EM, k-NN, Parzen window and PNN) multi-class and 

three fusion (i.e., AdaBoost, Bayes and PNN fusion) classification techniques. In order to 

statistically compare the systems, k-fold cross validation is used for both training and 

testing the system within a clean JPEG image dataset and nine stego image datasets. The 

statistical tool applied for analysis is the two tailed student t-test.  

 

The clean JPEG image dataset used as a cover image set for analyzing the system 

includes 1000 RGB images of size 512×512 with a quality factor of 75%. Nine stego 

image datasets are generated from the clean dataset with a stego message from the 

aforementioned nine embedding tools of 4000 characters which is equivalent to one page 

of text. The number of DCT coefficients altered within a color layer of a JPEG image is 

known as the embedding rate (Kharrazi et al., 2005). The average embedding rate of the 

coefficients altered for each stego image dataset are as follows:  

• F5 has an average embedding rate 6.25%. 

• JP Hide (JPH) has an average embedding rate 3.76% 

• JSteg (JS) has an average embedding rate 7.53%  

• Model-based (MB) has an average embedding rate 5.36%  

• Model-based Version 1.2 (MB1.2) has an average embedding rate 5.68% 

• OutGuess (OG) has an average embedding rate 3.24% 

• Steganos (STN) has an average embedding rate 0.75% 

• StegHide (SH) has an average embedding rate 2.30%  

• UTSA has an average embedding rate 5.38%  
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Note that in testing and training, 100 images are chosen from each clean and stego image 

dataset. The clean images used within the clean image dataset do not appear as stego 

images used within the stego image datasets, nor does any stego image reappear 

embedded with another steganography algorithm. For example, none of the F5 images 

were the same as the JSteg images.  

 

This chapter demonstrates the performance of the steganalysis classification system 

developed in this research. Section 4.1 describes the statistical methods of measure used 

for testing and validation in the experiment. The results include a comparison of the 

feature generation methods: wavelet feature generation, DCT feature generation and DCT 

directional and frequency decomposition feature generation. In Section 4.3, results on the 

steganalysis dataset for eight multi-class classification methods including expectation 

maximization with mixture models (EM), k-nearest neighbors (k-NN), kernel Fisher’s 

discriminant (KFD), Parzen window, probabilistic neural networks (PNN), support vector 

machines (SVM) and StegoWatch are discussed, respectively. Section 4.4 demonstrates a 

performance improvement when utilizing and fusing several classification algorithms 

together. Experimental results of three fusion techniques using AdaBoost, Bayesian 

neural network, and probabilistic neural network, are shown. Finally, a summary of all 

the results is presented in Section 4.5. 

  

4.1 Confirming and Validating the Analysis 

 

In statistics a result is statistically significant if it is unlikely to have occurred by chance. 

A statistically significant difference between two sets of results simply implies that there 

is statistical evidence that there is a difference. This however, does not indicate that the 

difference is necessarily large. In this research the results are generated using k-fold cross 

validation to determine the classification accuracy of the classification models. A t-test 

between paired samples about the means with a confidence level of 95% is used to 

determine the statistical significance of the results.   
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In k-fold cross-validation, the original sample is partitioned into k subsamples. Of the k 

subsamples, a single subsample is retained as the test data for testing the model, and the 

remaining k-1 subsamples are used as training data. The cross-validation process is then 

repeated k times (the folds), with each of the k subsamples used exactly once as the 

validation data. The k results from the folds are averaged to produce a single estimation 

(Kohavi, 1995; Mitchell, 1997; Russell and Norvig, 2003). 

 

In this chapter the data is partitioned into five groups of equal size as shown in Figure 

4.1. For each run four of the groups are used for training the classification model and the 

remaining group is used for testing the model. This procedure is repeated for five runs 

where the runs are for all five possible choices of the held out test group.  

 

 Total Number of Samples 

  

Run 1 Testing Data Training Data 

Run 2 Training Data Testing Data Training Data 

Run 3 Training Data Testing Data Training Data 

Run 4 Training Data Testing Data Training Data

Run 5 Training Data Testing Data 

Figure 4.1. 5-fold cross-validation with 5 runs consisting of 80% of the data for training 

the classification model and 20% for testing the training model. 

 

To ensure that the test of significance is calculated properly the Lilliefors test for 

normality is used to determine if the results being analyzed are normally distributed 

(Lilliefors, 1967; Abdi and Molin, 2007). If the result is determined that the results are 

normally distributed the t-test is used to test for statistical significance (Hogg, and Tanis, 

1993; Kohavi, 1995; Rice, 1995; Wackerly et al., 1996). On the other hand, if the test for 

normality fails then the Wilcoxon test is used to determine if the results are significant.  
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In the next section the results are shown in tables using the 5-fold cross validation. The 

tables are accompanied by analysis to determine if the reported results are statistically 

significant. 

 

4.2 Feature Generation Method Comparison 

 

The results in this section show a comparison between the three feature generation 

methods of wavelet features, DCT features, and DCT directional and frequency 

decomposition features, and results that use all three feature generation methods 

combined. Prior to classification the data is prepared using the data standardization 

described in subsection 2.3.1 (Dillon and Goldstein, 1984, pp. 12-13). Feature 

discrimination capability results from executing a SVM two-class classifier without and 

with the SVM-kernel feature ranking described in subsection 3.2.1. The SVM method 

used is SVMlight (Joachims, 1998, 2007). The feature ranking method used is the SVM-

kernel feature ranking method presented in Section 3.2. The kernel function 

( ),x xi jK used is the radial basis function 
( ) 2

γ⎛ ⎞− −⎜ ⎟
⎝ ⎠

x xi j

e with the parameter 

( )( )21/ 2 12γ = and the upper bound Ĉ = 12. The results of the analysis include the 

percentage of true positive and true negatives shown on a class-by-class basis where the 

clean image sets are compared against each steganography embedding image set. The 

true negative indicates the percentage of clean images correctly classified as clean images, 

while the true positive indicates the percentage of stego images correctly classified as 

stego images. The average of true negative and true positive is the classification accuracy 

(CA).   
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4.2.1 Wavelet Feature Generation (Lyu and Farid, 2004) 

 

The results for the wavelet feature generation, which generates 72 features, are shown 

without and with feature ranking in Tables 4.1 and 4.2, respectively.  

 

Table 4.1. Classification accuracy for wavelet feature generation.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean 
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2

Clean 
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
True 

Negative 
64.8± 

5.0 
94.3± 

9.8 
98.1± 

2.6 
59.4± 
13.6 

59.5± 
10.0 

71.3± 
8.7 

74.8± 
11.9 

50.7± 
6.1 

80.7± 
8.5 

True 
Positive 

66.6± 
.34 

81.6± 
6.3 

98.1± 
2.6 

56.3± 
9.7 

56.9± 
7.5 

70.7± 
9.2 

68.5± 
6.7 

50.2± 
7.0 

78.4± 
7.6 

Classification 
Accuracy 

65.7± 
3.9 

87.9± 
5.1 

98.1± 
1.0 

57.8± 
11.6 

58.2± 
8.7 

71.0± 
8.9 

71.6± 
8.0 

50.4± 
6.5 

79.5± 
6.7 

 

Table 4.2. Classification accuracy for wavelet feature generation using feature ranking.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean 
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2

Clean 
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
No. of 

Features 25 25 15 19 20 22 16 12 39 

True 
Negative 

74.9± 
4.4 

99.0± 
2.1 

99.1± 
2.1 

71.6± 
6.0 

73.1± 
6.9 

74.1± 
7.2 

83.8± 
2.8 

64.6± 
4.5 

86.4± 
4.0 

True 
Positive 

78.0± 
4.4 

91.6± 
8.6 

98.1± 
2.6 

66.4± 
3.4 

69.6± 
5.1 

74.0± 
6.5 

72.6± 
3.4 

61.4± 
2.6 

82.9± 
3.5 

Classification 
Accuracy 

76.4± 
2.7 

95.3± 
3.8 

98.5± 
1.3 

69.0± 
4.1 

71.3± 
5.5 

74.0± 
6.7 

78.2± 
2.4 

63.0± 
2.6 

84.6± 
3.2 

 
 

The results shown in Table 4.2 indicate an improvement of detection accuracy by proper 

selection of features during training. The second row shows the number of features 

among 72 identified by the SVM-kernel feature ranking method. The statistical 

significance of selecting features with the proposed feature saliency metric is depicted in 

Table 4.3. As can be seen in the significance testing for classification accuracy, the Clean 

vs. F5 image classes, Clean vs. MB1.2, and Clean vs. SH comparisons show statistically 
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significant difference in the mean, while the difference in the mean for the other 

embedding methods are not statistically significant.  
 

Table 4.3. t-test; paired two samples for means between Tables 4.1 and 4.2. 
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image  
Classes 

Clean 
vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA 
t-Stat 5.97 2.39 0.186 2.42 5.03 0.86 1.68 4.09 1.86 

Statistically 
Significant Yes No No No Yes No No Yes No 

 

4.2.2 DCT Feature Generation (Pevny and Fridrich, 2006) 

 

The results for the DCT feature generation (Pevny and Fridrich, 2006) are shown without 

and with feature selection in Tables 4.4 and 4.5. The 274 features generated (Pevny and 

Fridrich, 2006) are an extension of the original features described in Section 2.2.2 

developed by Fridrich (2004). 

 

Table 4.4. Classification accuracy for DCT feature generation.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean 
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2

Clean 
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
True 

Negative 
100± 
0.0 

100± 
0.0 

100± 
0.0 

99.0± 
2.1 

100± 
0.0 

100± 
0.0 

86.5± 
6.9 

100± 
0.0 

100± 
0.0 

True 
Positive 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

87.8± 
6.0 

100± 
0.0 

100± 
0.0 

Classification 
Accuracy 

100± 
0.0 

100± 
0.0 

100± 
0.0 

99.5± 
1.1 

100± 
0.0 

100± 
0.0 

87.1± 
6.0 

100± 
0.0 

100± 
0.0 
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Table 4.5. Classification accuracy for DCT feature generation using feature ranking.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean 
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2

Clean 
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
No. of 

Features 12 24 5 7 7 5 23 5 5 

True 
Negative 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

89.1± 
3.6 

100± 
0.0 

100± 
0.0 

True 
Positive 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

88.5± 
5.7 

100± 
0.0 

100± 
0.0 

Classification 
Accuracy 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

88.7± 
2.8 

100± 
0.0 

100± 
0.0 

 

The results shown in Table 4.5 indicate after the SVM-kernel feature ranking, only a few 

of the 274 features are necessary for a perfect classification accuracy in most of the cases 

except the Clean vs. STN image classes. The statistical significance of selecting features 

with the proposed feature ranking is depicted in Table 4.6. As can be seen in the 

significance testing for classification accuracy, only the Clean vs. STN image classes 

show significant difference in the mean, while the difference in the mean for the other 

stego embedding methods are not statistically significant. Although there are no 

improvement (quite difficult to improve from a perfect classification) in the classification 

accuracy even with the inclusion of a feature ranking method, the utility is apparent in the 

reduced number of features necessary to still achieve perfect classification.  

 

Table 4.6. t-test; paired two samples for means between Tables 4.4 and 4.5.  
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image  
Classes 

Clean 
vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA 
t-Stat 0.0 0.0 0.0 1.00 0.0 0.0 0.43 0.0 0.0 

Statistically 
Significant No No No No No No Yes No No 
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4.2.3 DCT Directional and Frequency Decomposition 

 

The results for the DCT directional and frequency decomposition feature generation 

described in Section 3.1 are shown without feature selection in Table 4.7 and with feature 

selection in Table 4.8. This feature generation method results in 180 features. 

 

Table 4.7. Classification accuracy for DCT directional and frequency feature generation.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean 
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2

Clean 
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
True 

Negative 
95.4± 

5.3 
99.0± 

2.1 
99.0± 

2.1 
99.0± 

2.1 
96.4± 

5.7 
94.5± 

5.8 
96.2± 

6.0 
98.0± 

2.8 
100± 
0.0 

True 
Positive 

95.4± 
5.3 

100± 
0.0 

98.2± 
4.1 

93.7± 
4.9 

93.8± 
6.6 

97.0± 
2.7 

89.2± 
4.2 

92.9± 
6.3 

100± 
0.0 

Classification 
Accuracy 

95.4± 
2.1 

99.5± 
1.1 

98.6± 
2.0 

96.3± 
1.8 

95.1± 
2.3 

95.7± 
2.5 

92.7± 
1.9 

95.4± 
3.0 

±100±
0.0 

 

Table 4.8. Classification accuracy for DCT directional and frequency feature generation 
using feature ranking.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
No. of 

Features 21 35 22 26 27 24 23 25 22 

True 
Negative 

98.2± 
4.1 

100± 
0.0 

100± 
0.0 

98.2± 
4.1 

98.2± 
4.1 

98.1± 
2.6 

100.0± 
0.0 

100± 
0.0 

100± 
0.0 

True 
Positive 

100± 
0.0 

100± 
0.0 

100± 
0.0 

98.1± 
2.6 

98.1± 
2.6 

98.1± 
2.6 

97.1± 
2.6 

96.3± 
3.8 

100± 
0.0 

Classification 
Accuracy 

99.1± 
2.0 

100± 
0.0 

100± 
0.0 

98.1± 
1.9 

98.1± 
1.9 

98.1± 
1.1 

98.5± 
1.3 

98.1± 
1.9 

100± 
0.0 

 
 

The results shown in Table 4.8 indicate an improvement of detection accuracy by proper 

ranking of features during training. The second row shows the number of features among 

180 identified by the presented feature saliency metric, i.e., the SVM-kernel feature 

ranking method. The statistical significance of selecting features with the proposed 

feature ranking is depicted in Table 4.9. As can be seen for the classification accuracy 

and significance testing, the Clean vs. F5, Clean vs. MB1.2, Clean vs. STN, Clean vs. SH 
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embedding methods show significant difference in the mean, while the difference in the 

mean for the other embedding methods are not statistically significant.  
 

Table 4.9. t-test; paired two samples for means between Tables 4.7 and 4.8.  
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image  
Classes 

Clean 
vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA 
t-Stat 4.06 1.00 1.51 1.69 6.37 2.23 5.94 3.29 0.0 

Statistically 
Significant Yes No No No Yes No Yes Yes No 

 

4.2.4 Combined Features 

 

The wavelet features (Lyu and Farid, 2004), DCT features (Pevny and Fridrich, 2006) 

and DCT directional and frequency decomposition features are combined to increase the 

classification accuracy for each of the targeted embedding methods. The results for the 

combined features are shown with feature selection in Table 4.10. The total number of 

features in the combination of the three methods is 526.  

 

Table 4.10. Classification accuracy for combined feature generation using feature 
ranking.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2 

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
No. of 

Features 11 18 5 6 10 5 15 7 5 

True 
Negative 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

True 
Positive 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

Classification 
Accuracy 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

 

The results shown in Table 4.10 indicate that perfect detection accuracies are obtained for 

each image class by combining the three feature generation methods and performing a 

proper ranking of the 526 features. Statistical significance comparisons are performed for 
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the combined features versus the first three compared methods in this chapter. The 

statistical significance shown in Table 4.11 is the classification accuracy comparison 

between the combined features from Table 4.10 and the wavelet feature generation 

results of Table 4.2.  
 

Table 4.11. t-test: paired two samples for means of wavelet features with feature ranking 
vs. combined features with feature ranking.  

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image  
Classes 

Clean 
vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA 
t-Stat 19.4 2.73 2.44 16.5 11.4 8.55 20.0 30.8 10.6 

Statistically 
Significant Yes No No Yes Yes Yes Yes Yes Yes 

 

The statistical significance shown in Table 4.12 is the classification accuracy comparison 

between the combined features from Table 4.10 and the DCT feature generation results of 

Table 4.5.  
 

Table 4.12. t-test: paired two samples for means of DCT features with feature ranking vs. 
combined features with feature ranking.  

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image  
Classes 

Clean 
vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA 
t-Stat 0.0 0.0 0.0 0.0 0.0 0.0 8.70 0.0 0.0 

Statistically 
Significant No No No No No No Yes No No 

 

The statistical significance shown in Table 4.13 is the classification accuracy comparison 

between the combined features from Table 4.10 and the DCT directional and frequency 

feature generation results of Table 4.8.  
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Table 4.13. t-test: paired two samples for means of DCT directional and frequency 
features with feature ranking vs. combined features with feature ranking.  

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image  
Classes 

Clean 
vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA 
t-Stat 1.0 0.0 0.0 2.17 2.17 4.00 2.17 0.0 0.0 

Statistically 
Significant No No No No No Yes No No No 

 

The results shown in Table 4.11 indicate a significant improvement in classification 

accuracy when comparing the wavelet features with feature ranking versus the combined 

features with feature ranking method for all embedding methods, except JPHide and 

JSteg. Table 4.12 only shows classification accuracy improvement for STN when 

comparing DCT features with feature ranking (using 23 features) versus the combined 

features with feature ranking (using 15 features). Similarly, in Table 4.13 classification 

accuracy improvement is achieved for the detection of OG when comparing DCT 

decomposition features with feature ranking (using 24 features) versus combined feature 

with feature ranking (using 5 features). This analysis further highlights the strengths and 

weaknesses of each of the feature generation methods and its capability of detecting 

certain embedding methods. By combining the features from the three feature generation 

methods and applying the SVM-kernel feature ranking method the classification accuracy 

is improved in identifying stego images from clean images.  

 

4.2.5 Summary of Feature Generation Methods 

 

From subsection 4.2.1 to 4.2.4, the results from each individual feature generation 

method and the combined features are demonstrated. A summary table on classification 

accuracies is shown in Table 4.14. It is apparent that the combined features integrate the 

capability of the three methods and achieves perfect classification accuracy.  
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Table 4.14. Classification accuracy summary for the individual feature generation and 
combined features when feature ranking is used.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean 
vs. 
JS 

Clean 
vs. 
MB 

Clean 
vs. 

MB1.2

Clean 
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA

Wavelets 76.4± 
2.7 

95.3± 
3.8 

98.5± 
1.3 

69.0± 
4.1 

71.3± 
5.5 

74.0± 
6.7 

78.2± 
2.4 

63.0± 
2.6 

84.6± 
3.2 

DCT 100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

88.7± 
2.8 

100± 
0.0 

100± 
0.0 

DCT 
Decomp 

99.1± 
2.0 

100± 
0.0 

100± 
0.0 

98.1± 
1.9 

98.1± 
1.9 

98.1± 
1.1 

98.5± 
1.3 

98.1± 
1.9 

100± 
0.0 

Combined 100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

100± 
0.0 

 
 

The SVM-kernel feature ranking method has shown that the best subset of features can be 

identified to improve classification accuracy of the two-class classifier. Table 4.15 shows 

how each of the feature generation method contributes to the various stego methods in the 

number of features to obtain the combined features for clean versus each stego image 

class as in Table 4.10.  For a list of specific features associated with the methods in Table 

4.15 the reader is referred to Appendix A. 

 

Table 4.15. Number of features used from each of the feature generation method in 
feature combination.  

 
Clean 

vs. 
F5 

Clean 
vs. 

JPH 

Clean
vs. 
JS 

Clean
vs. 
MB 

Clean 
vs. 

MB1.2

Clean
vs. 
OG 

Clean 
vs. 

STN 

Clean 
vs. 
SH 

Clean 
vs. 

UTSA
No. of 

Features 11 18 5 6 10 5 15 7 5 

Wavelets 1 3 0 0 0 0 2 0 0 
DCT 5 12 5 5 5 5 7 5 5 
DCT 

Decomp 5 3 0 1 5 0 6 2 0 
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4.3 Results for Individual Multi-class Detection Systems 

 

This section provides results for the seven multi-class classification systems designed to 

solve the steganalysis problem of identifying the embedding methods. For each multi-

class detection system the process of performing feature preprocessing, feature extraction, 

feature ranking, classification and multi-class classification is followed. In this section 

the six classification methods described in Section 2.6 and a commercial tool are used as 

part of seven individual multi-class detection systems: expectation maximization, k-

nearest neighbors, Parzen window, probabilistic neural networks, kernel Fisher’s 

discriminant, support vector machines, and StegoWatch, which is a commercial detection 

tool. The features used for classification are the combination of wavelet features, DCT 

features and the presented DCT directional and frequency decomposition features. The 

feature improvement includes data standardization, feature extraction and feature ranking 

methods which are used in conjunction with the multi-class systems.  All normalization, 

feature ranking/selection, and settings were tested where only the best performing 

combination is presented. For example, in the EM method in Section 4.3.1, the 

Bhattacharyya distance is used instead of the other four feature ranking/selection 

discussed in Section 2.5 since the Bhattacharyya distance provided the highest 

classification accuracy combined with the other parameter combinations. 

 

4.3.1 Expectation Maximization 

 

Table 4.16 shows the classification accuracy from a 5-fold cross validation when 

performing multi-class classification using expectation maximization (EM).  The feature 

improvement methods and classification parameters used in expectation maximization 

are listed in the following, in which the combination of parameters provides the highest 

classification accuracy. 

• The data for this model is not normalized; 

• Bhattacharyya distance is used for feature ranking with the top 34 out of 526 

features selected; 
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• PCA is performed on the subset of un-normalized 34 features resulting in 12 

principal components with eigenvalues greater than 1; 

• The number of clusters are determined by using a clustering algorithm on each of 

the training classes (Sanguinetti et al., 2005) prior to training the EM algorithm 

where two-clusters are used for each class with the exception of the Steganos 

class which requires three clusters, and each class is trained individually where 

the 10 individual models return the mean and covariance’s used with the Bayes 

classifier. 

 

Table 4.16. Classification accuracy for 10-class expectation maximization classifier. 
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 83± 
5.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

14± 
4.4 

0± 
0.0 

0± 
0.0 

F5 0± 
0.0 

88± 
9.0 

2± 
2.7 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

2± 
4.4 

0± 
0.0 

4± 
4.1 

JPH 0± 
0.0 

2± 
2.7 

90± 
7.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

5± 
5.0 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

51± 
11.9 

49± 
11.9 

0± 
0.0 

0± 
0.0 

5± 
7.0 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

38± 
7.5 

42± 
9.0 

0± 
0.0 

0± 
0.0 

6± 
10.8 

0± 
0.0 

OG 1± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

99± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 16± 
6.5 

0± 
0.0 

6± 
8.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

79± 
18.5 

1± 
2.2 

0± 
0.0 

SH 0± 
0.0 

4± 
4.1 

2± 
4.4 

0± 
0.0 

9± 
6.5 

9± 
6.5 

1± 
2.2 

0± 
0.0 

86± 
6.5 

0± 
0.0 

UTSA 0± 
0.0 

6± 
6.5 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

2± 
2.7 

96± 
4.1 

  

In Table 4.16, the results show that the MB and MB12 image classes cannot be separated 

by the EM multi-class system since their classification accuracies are of mean values 

51% and 42%, respectively. The results show that a MB stego image for testing has a 

38% and 9% probability of being misclassified as MB12 and SH, respectively.  On the 

other hand, a MB12 stego image for testing has a 49% and 9% probability of being 

misclassified as MB and SH, respectively. EM performs best in identifying JPH, JS, OG 
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and UTSA image classes with classification accuracies ≥ 90%.   EM performs fairly well 

in identifying Clean, F5, STN and SH image classes with classification accuracies 

between 75% to 89%. 

 

4.3.2 k–Nearest Neighbors (k-NN) 

 

Table 4.17 shows the classification accuracy from 5-fold cross validation when 

performing multi-class classification using k-nearest neighbors. The feature improvement 

methods and classification parameters used in k-nearest neighbors are listed in the 

following, in which the combination of parameters provides the highest classification 

accuracy. 

• The data is normalized using min-max normalization; 

• Fisher’s linear discriminant is used for ranking the features with the top 34 out of 

526 features selected; 

• The number of nearest neighbors are determined experimentally based on 

classification accuracy with k = 5. 
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Table 4.17. Classification accuracy for 10-class k-NN classifier.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 78± 
7.5 

0± 
0.0 

2± 
2.7 

0± 
0.0 

1± 
2.2 

0± 
0.0 

1± 
2.2 

30± 
15.4 

1± 
2.2 

0± 
0.0 

F5 1± 
2.2 

95± 
6.1 

1± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

6± 
6.5 

JPH 0± 
0.0 

1± 
2.2 

92± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

5± 
8.6 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

54± 
6.5 

52± 
9.0 

0± 
0.0 

0± 
0.0 

7± 
10.9 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

38± 
4.4 

47± 
9.7 

0± 
0.0 

0± 
0.0 

3± 
4.4 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

99± 
2.2 

0± 
0.0 

1± 
2.2 

0± 
0.0 

STN 21± 
8.2 

1± 
2.2 

5± 
3.5 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

65± 
11.1 

1± 
2.2 

0± 
0.0 

SH 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

7± 
5.7 

1± 
2.2 

0± 
0.0 

0± 
0.0 

86± 
10.8 

0± 
0.0 

UTSA 0± 
0.0 

3± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

94± 
6.5 

  

In Table 4.17, the results show that the MB and MB12 image classes cannot be separated 

by the k-NN multi-class system since their classification accuracies are of mean values 

54% and 47%, respectively. This indicates that a MB stego image for testing has a 38% 

and 7% probability of being misclassified as MB12 and SH, respectively.  On the other 

hand, a MB12 stego image for testing has a 52% probability of being misclassified as MB. 

In addition, k-NN barely does better than a coin toss in classifying STN with a 

classification accuracy of 65% with a 30% probability of misclassifying STN as Clean. k-

NN performs best in identifying F5, JPH, JS, OG and UTSA image classes with 

classification accuracies ≥ 90%. k-NN performs fairly well in identifying Clean and SH 

image classes with classification accuracies between 75% to 89%. When comparing 

Table 4.17 with Table 4.16, both methods appear to misclassify MB and MB12. This is in 

large part due to the features being used while two different feature ranking methods are 

used, i.e., expectation maximization uses Bhattacharyya feature ranking with 34 features 

and k-NN uses Fisher’s linear discriminant with 34 features, 30 of the 34 feature are the 

same in both.  
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4.3.3 Probabilistic Neural Networks (PNN) 

 

Table 4.18 shows the classification accuracy from 5-fold cross validation when 

performing multi-class classification using PNN. The feature improvement methods and 

classification parameters used in probabilistic neural networks are listed in the following, 

in which the combination of parameters provides the highest classification accuracy. 

• The data is normalized using Z-score normalization; 

• The feature ranking is conducted using signal-to-noise ratio with the top 58 out of 

526 features selected; 

• Spread parameter σ = 0.24. 

 

Table 4.18. Classification accuracy for 10-class PNN classifier.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 84± 
5.4 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

1± 
2.2 

53± 
18.2 

2± 
2.7 

0± 
0.0 

F5 0± 
0.0 

99± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

JPH 0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

57± 
9.0 

42± 
6.7 

0± 
0.0 

0± 
0.0 

5± 
7.0 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

37± 
7.5 

58± 
6.7 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

98± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 16± 
5.4 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

45± 
15.8 

0± 
0.0 

0± 
0.0 

SH 0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

4± 
6.5 

0± 
0.0 

1± 
2.2 

1± 
2.2 

91± 
7.4 

0± 
0.0 

UTSA 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

  

In Table 4.18, the results show that the MB, MB12 and STN image classes cannot be 

separated by the PNN multi-class system since their classification accuracies are of mean 

values 57%, 58% and 45%, respectively. Other than EM and k-NN in Table 4.16 and 4.17, 
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PNN classifies five stego methods, F5, JPH, JS, OG and UTSA, with a 98% classification 

accuracy or better; however, it fails to separate STN from Clean and MB from MB12.  

  

4.3.4 Parzen window 

 

Table 4.19 shows the classification accuracy from 5-fold cross validation when 

performing multi-class classification using Parzen window. The feature improvement 

methods and classification parameters used in Parzen window are listed in the following, 

in which the combination of parameters provides higher classification accuracy. 

• The data is normalized using Z-score normalization;  

• Fisher’s linear discriminant is used for ranking the features with the top 36  out of 

526 features selected; 

• Window width σ = 0.85.  

 

Table 4.19. Classification accuracy for 10-class Parzen window classifier.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 82± 
9.0 

0± 
0.0 

4± 
4.1 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

30± 
28.9 

0± 
0.0 

0± 
0.0 

F5 0± 
0.0 

99± 
2.2 

1± 
2.2 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

4± 
4.1 

JPH 0± 
0.0 

0± 
0.0 

90± 
6.1 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

57± 
14.5 

53± 
15.2 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

33± 
9.7 

42± 
10.3 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

99± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 18± 
9.0 

0± 
0.0 

5± 
6.1 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

70± 
28.9 

2± 
2.7 

0± 
0.0 

SH 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

8± 
10.3 

5± 
7.0 

0± 
0.0 

0± 
0.0 

96± 
4.1 

0± 
0.0 

UTSA 0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

96± 
4.1 
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In Table 4.19, the results show that Parzen window method is able to classify F5, JPH, JS, 

OG, SH, and UTSA with a 90% classification accuracy or better. Although it fails to 

separate STN from Clean, the classification accuracy using Parzen window instead of k-

NN and PNN improves to 70%. As compared to Table 4.16, the Parzen window method 

performs better on SH with a 96% classification accuracy versus 86% in EM. 

 

4.3.5 Kernel Fisher’s Discriminant (KFD) with Multi-class Tree 

 

Table 4.20 shows the classification accuracy from 5-fold cross validation when 

performing multi-class classification using KFD. The feature improvement methods and 

classification parameters used in kernel Fisher’s discriminant are listed in the following, 

in which the combination of parameters provides the highest classification accuracy. 

• The data is normalized using Z-score normalization;  

• The feature ranking at each of the nodes is conducted using kernel feature ranking; 

• The nodes correspond to Figure 4.2 where the top 50 features are used for 

classification in node A (i.e., classes 1 2 3 4 5 6 7 8 9 and 10), the top 46 features 

selected for node B , the top 34 features for node D, the top 24 features for node G, 

the top 36 features for node E, the top 32 features selected for node H, the top 26 

features selected for node I, the top 31 features selected for node C, the top 25 

features selected for node F;  
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Figure 4.2. Decision tree for a 10-class classification problem with 10 leaf nodes, 9 

parent nodes and a maximum depth of 6. 
 

• The kernel used is the radial basis function with the normalizing constant Ĉ = 12 

and σ = 3. 
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Table 4.20. Classification accuracy for 10-class KFD classifier.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 78± 
5.7 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

20± 
12.7 

0± 
0.0 

0± 
0.0 

F5 0± 
0.0 

94± 
6.5 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

2± 
2.7 

JPH 2± 
2.7 

0± 
0.0 

92± 
4.4 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

2± 
2.7 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

94± 
6.5 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB 0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

54± 
2.2 

40± 
10.6 

2± 
2.7 

0± 
0.0 

8± 
7.5 

1± 
2.2 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

40± 
3.5 

59± 
10.8 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

98± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 19± 
5.4 

1± 
2.2 

0± 
0.0 

5± 
7.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

78± 
14.4 

0± 
0.0 

0± 
0.0 

SH 1± 
2.2 

0± 
0.0 

7± 
4.4 

1± 
2.2 

5± 
5.0 

1± 
2.2 
0.0 

0± 
0.0 

0± 
0.0 

90± 
7.9 

0± 
0.0 

UTSA 0± 
0.0 

4± 
4.1 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

97± 
2.7 

  

In Table 4.20, the results show that using KFD is able to classify F5, JPH, JS, OG, SH 

and UTSA with a 90% classification accuracy or better. Comparing Table 4.16 to Table 

4.19, KFD might not have perfect classification accuracies on certain methods, however, 

it performs better on average for all the image classes. 

 

4.3.6 Support Vector Machines (SVM) with Multi-class Tree 

 

Table 4.21 shows the classification accuracy from 5-fold cross validation when 

performing multi-class classification using SVM. 
 

The feature improvement methods and classification parameters used in support vector 

machines with multi-class tree are listed in the following, in which the combination of 

parameters provides the highest classification accuracy. 

• The data is normalized using Z-score normalization;  
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• The feature ranking at each of the nodes was conducted using kernel feature 

ranking;  

• The nodes correspond to Figure 4.3 with the top 90 features selected for node A, 

the top 44 features selected for node B, the top 46 features for node D, the top 21 

features for node G, the top 63 features for node E, the top 48 features selected for 

node H, the top 19 features selected for node I, the top 46 features selected for 

node C, the top 22 features selected for node F;  
 

 
Figure 4.3. Decision tree for a 10-class classification problem with 10 leaf nodes, 9 

parent nodes and a maximum depth of 6. 
 

• The kernel used was the radial basis function, the normalizing constant Ĉ = 6, and 

σ = 3. 
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Table 4.21. Classification accuracy for 10-class SVM classifier.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 86± 
4.1 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

17± 
16.0 

1± 
2.2 

0± 
0.0 

F5 1± 
2.2 

95± 
3.5 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

JPH 0± 
0.0 

1± 
2.2 

92± 
4.4 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

JS 1± 
2.2 

4± 
2.2 

6± 
6.5 

100± 
0.0 

0± 
0.0 

0± 
0.0 

2± 
2.7 

0± 
0.0 

2± 
4.4 

1± 
2.2 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

53± 
7.5 

43± 
12.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

46± 
8.2 

56± 
13.8 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

97± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 11± 
2.2 

0± 
0.0 

2± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

82± 
16.0 

0± 
0.0 

0± 
0.0 

SH 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

1± 
2.2 

0± 
0.0 

1± 
2.2 

96± 
4.1 

0± 
0.0 

UTSA 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

98± 
2.7 

  

In Table 4.21, the results show that the MB and MB12 image classes cannot be separated 

by the SVM multi-class system since their classification accuracies are of mean values 

53% and 56%, respectively. However, Table 4.21 shows that SVM with multi-class tree 

performs better in general on other image classes when comparing to other classifiers 

from Table 4.16 to Table 4.20.  For instance, Clean has a classification accuracy of 86% 

and STN has a classification accuracy of 82% which are both larger than the other five 

multi-class classifiers. 

 

4.3.7 StegoWatch 

 

Table 4.22 shows the classification accuracy from 5-fold cross validation when 

performing multi-class classification using StegoWatch. Observe from Table 4.22 that 

StegoWatch clearly targets the identification of F5 embedding method above all others. 

For this tool the results are returned as either H, M or L for a high, medium or low stego 

detection level. If the image is clean an OK is returned indicating that the image is clean. 

For the image data set being analyzed in this research StegoWatch also returns a 



 

141 

comment indicating that F5 has been identified. For this tool three classes are assigned. 

In the event an H or M is returned the image is considered as being stego, if an L or OK is 

returned the image is labeled as clean and if the comment indicates that F5 was identified 

then F5 is the class label. 

 

Table 4.22. Classification accuracy for StegoWatch detection system.  
 Actual 

Pr
ed

ic
te

d 

 Clean F5 Stego 

Clean 51± 
6.9 

0± 
0.0 

48± 
12.4 

F5 0± 
0.0 

100± 
0.0 

0± 
0.0 

Stego 49± 
6.9 

0± 
0.0 

52± 
12.4 

  

In Table 4.22, the results show the classification accuracies on Clean, F5 and all of the 

other (Stego) image classes. Except F5, the other image classes cannot be separated by 

the multi-class system since their classification accuracies are around 50%. 

 

4.3.8 Summary of Steganalysis Multi-Class results 

 

Table 4.23 summarizes the classification accuracies of the seven multi-class classifiers 

that were examined in this chapter. Since StegoWatch is clearly specialized in identifying 

F5, it will not be included in the comparison performed in the proceeding analysis of 

identifying the multi-class classifier that targets specific embedding methods. However, 

for completeness the StegoWatch classification accuracy is still depicted in Table 4.23. 

Statistical significance comparing the best of the true multi-class classifiers (i.e., EM, k-

NN, Parzen and PNN) with the best of the tree structure multi-class classifiers (i.e., KFD 

and SVM) is conducted using a t-test and shown in Table 4.24. The best classifiers 

according to the defined grouping are indicated in bold in Table 4.23, which are then 

used in the statistical comparison in Table 4.24. Based on overall classification accuracy 

in Table 4.23, the best individual system appears to be SVM with used in a multi-class 

tree structure. 
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Table 4.23. Classification accuracy for multi-class detection system. 
 Clean F5 JPH JS MB MB12 OG STN SH UTSA CA 

EM 83± 
5.7 

88± 
9.0 

90± 
7.0 

100± 
0.0 

51± 
11.9 

42± 
9.0 

99± 
2.2

79± 
18.5 

86± 
6.5 

96± 
4.1 

81.4± 
20.5 

k-NN 78± 
7.5 

95± 
6.1 

92± 
2.7 

100± 
0.0 

54± 
6.5 

47± 
9.7 

99± 
2.2 

65± 
11.1 

86± 
10.8 

94± 
6.5 

81± 
19.6 

Parzen  82± 
9.0 

99± 
2.2 

90± 
6.1 

100± 
0.0 

57± 
14.4 

42± 
10.3 

99± 
2.2 

70± 
28.9 

96± 
4.1 

96± 
4.1 

83.1± 
22.0 

PNN  84± 
5.4 

99± 
2.2 

100± 
0.0 

100± 
0.0 

57± 
9.0

58± 
6.7

98± 
2.7 

45± 
15.8 

91± 
7.4 

100± 
0.0 

83.2±
21.5 

KFD 78± 
5.7 

94± 
6.5 

92± 
4.4 

94± 
6.5 

54± 
2.2 

59± 
10.8 

98± 
2.7

78± 
14.4 

90± 
7.9 

97± 
2.7 

83.4± 
16.5 

SVM 86± 
4.1 

95± 
3.5 

92± 
4.4 

100± 
0.0 

53± 
7.5 

56± 
13.8 

97± 
2.7 

82± 
16.0 

96± 
4.1 

98± 
2.7 

85.5±
17.9 

Stego 
Watch 

51± 
6.9 

100± 
0.0 

52± 
12.4 

67.7±
10.6 

 

 

Table 4.24. t-test: paired two samples for means. 
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 

Image 
Class Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Classifier 
Comparison 

PNN 
vs. 

SVM 

PNN 
vs. 

SVM 

PNN 
vs. 

SVM 

PNN 
vs. 

SVM 

PNN 
vs. 

KFD 

PNN 
vs. 

KFD 

EM 
vs. 

KFD 

EM 
vs. 

SVM 

Parzen 
vs. 

SVM 

PNN 
vs. 

SVM 
t-Stat 0.49 2.13 4.0 0.0 0.6 0.27 1.0 0.8 0.0 1.63 
Statistically 
Significant No No Yes No No No No No No No 

 

As can be seen in Table 4.24, only the JPH image class shows significant difference in 

the mean between the best result from a multi-class classifier and the best result from the 

multi-class tree results. The difference in the mean for the rest of the image classes are 

not statistically significant. In addition, the results from the individual tables show that 

the various classifiers each have individual strengths when identifying the various 

embedding methods. To take advantage of the individual classifiers the next section uses 

fusion to combine the seven detection systems. 
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4.4 Fusion 

 

From Section 4.3, no advantage of single multi-class classifiers has been shown; instead 

each of the multi-class classifier has individual strength. To make use of the individual 

strengths of the classifiers, the three fusion techniques presented in Section 3.4 are used 

and the results shown in this section. For AdaBoost and Bayesian network fusion the 

class labels are fused as discrete values. For the commercial tool, StegoWatch, the results 

are returned as either L, OK indicating a clean class label, or F5. The PNN fusion 

however, requires that the results feed into the fusion system be posterior probabilities. 

To solve this problem for the commercial tool two inputs are used, clean or F5. If the 

result returned is clean, L or OK, a posterior probability of 0.9 is assigned and the F5 

input is assigned a 0.01. If the result retuned is F5 a posterior probability of 0.9 is 

assigned and the clean input is assigned a 0.01. For the 10-class classifiers probabilities 

are assigned to each of the 10 classes but only 9 of the 10 labels from each of the 

classifiers is used to train the fusion system, allowing proper training of the weights. 

 

4.4.1 AdaBoost 

 

The results for AdaBoost fusion are shown in Table 4.25. Fusing the seven multi-class 

systems results in detecting the Clean and Steganos (STN) classes as well as the Model-

based and Model-based version 1.2 are improved.  
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Table 4.25. Classification accuracy for AdaBoost fusion.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 86± 
4.1 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

16± 
19.8 

0± 
0.0 

0± 
0.0 

F5 0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

JPH 1± 
2.2 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

63± 
7.5 

37± 
10.3 

0± 
0.0 

0± 
0.0 

2± 
4.4 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

34± 
6.5 

61± 
8.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 13± 
4.4 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

84± 
19.8 

1± 
2.2 

0± 
0.0 

SH 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

3± 
2.7 

2± 
2.7 

0± 
0.0 

0± 
0.0 

97± 
4.1 

0± 
0.0 

UTSA 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

  

With AdaBoost, the classification accuracies of MB and MB12 are 63% and 61%. 

Comparing to the best individual classifier as shown in Table 4.23, AdaBoost actually 

improves the classification capability of these two image classes. 

 

4.4.2 Bayes Fusion 

 

The results for Bayes fusion are shown in Table 4.26. Similar to AdaBoost, this fusion 

method also improved the classification accuracy between the Clean and Steganos (STN) 

classes as well as the Model-based and Model-based version 1.2. 
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Table 4.26. Classification accuracy for Bayes fusion.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 89± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

13± 
16.4 

1± 
2.2 

0± 
0.0 

F5 0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

JPH 1± 
2.2 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

63± 
8.3 

37± 
8.3 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

34± 
10.8 

63± 
8.3 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 10± 
3.5 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

86± 
15.5 

0± 
0.0 

0± 
0.0 

SH 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

3± 
2.7 

0± 
0.0 

0± 
0.0 

1± 
2.2 

96± 
4.1 

0± 
0.0 

UTSA 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

  

As compared to the best individual classifier shown in Table 4.23, this fusion technique 

actually at the very least maintains or improves every classification accuracy for all the 

image classes. 

 

4.4.3 PNN Fusion 

 

The results for PNN fusion are shown in Table 4.27. Similar to the previous two fusion 

systems, the classification accuracy between the Clean and STN classes as well as the 

MB and MB12 are also improved. 
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Table 4.27. Classification accuracy for PNN fusion.  
Actual 

Pr
ed

ic
te

d 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA 

Clean 88± 
2.7 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

15± 
17.6 

1± 
2.2 

0± 
0.0 

F5 0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

JPH 1± 
2.2 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

1± 
2.2 

0± 
0.0 

0± 
0.0 

JS 0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

3± 
4.4 

0± 
0.0 

MB 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

56± 
13.8 

34± 
10.8 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

MB12 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

40± 
14.5 

63± 
8.3 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

OG 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

STN 11± 
2.2 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

84± 
19.8 

0± 
0.0 

0± 
0.0 

SH 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

4± 
2.2 

3± 
2.7 

0± 
0.0 

0± 
0.0 

96± 
4.1 

0± 
0.0 

UTSA 0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

0± 
0.0 

100± 
0.0 

 

With PNN fusion, the classification accuracies of Clean, F5, MB, MB12 and STN image 

classes are improved as compared to the best individual classifier shown in Table 4.23. 

 

4.4.4 Summary of Multi-class Steganalysis Fusion Techniques 

 

Table 4.28 shows the classification accuracy of the fusion methods and the best 

individual classifier, i.e., SVM with multi-class tree. It is chosen as the best individual 

classifier purely based on the overall classification accuracy of 85.5% (Table 4.23). Table 

4.28 shows that by using any fusion technique classification accuracy improves over the 

best individual classifier. It shows that each of the fusion methods has an equal or higher 

classification accuracy over any of the best individual classifiers results.  
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Table 4.28. Classification accuracy comparisons between the best individual results and 
the three fusion methods. 

 Clean F5 JPH JS MB MB12 OG STN SH UTSA CA 
SVM 86± 

4.1 
95± 
3.5 

92± 
4.4 

100± 
0.0 

53± 
7.5 

56± 
13.8 

97± 
2.7 

82± 
16.0 

96± 
4.1 

98± 
2.7 

85.5± 
17.3 

AdaBoost 
Fusion 

86± 
4.1 

100± 
0.0 

100± 
0.0 

100± 
0.0 

63± 
7.5 

61± 
8.2 

100± 
0.0 

84± 
19.8 

96± 
4.1 

100± 
0.0 

89± 
15.3 

Bayes 
Fusion 

89± 
2.2 

100± 
0.0 

100± 
0.0 

100± 
0.0 

63± 
7.5 

63± 
8.3 

100± 
0.0 

86± 
15.5 

96± 
4.1 

100± 
0.0 

89.7± 
15.3 

PNN 
Fusion 

89± 
2.2 

100± 
0.0 

100± 
0.0 

100± 
0.0 

65± 
3.5 

63± 
8.3 

100± 
0.0 

86± 
15.5 

96± 
4.1 

100± 
0.0 

89.9± 
14.9 

 

The three fusion techniques are equally valid choices for combining the individual multi-

class classifier from Section 4.3. In Table 4.29 the t-test is performed between the PNN 

fusion (highest overall CA in the fusion methods examined) and the SVM multi-class 

classifier (highest overall CA of the individual multi-class classifier) to determine 

whether the difference in the means between these two methods is statistically significant. 

As noted in Table 4.29 the two methods show statistical differences for the F5, JPH, MB, 

and STN image classes. 

  

 Table 4.29. t-test: paired two samples for means of classification accuracy between PNN 
fusion and SVM. 

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05 
Image 
Class Clean F5 JPH JS MB MB12 OG STN SH UTSA 

t-Stat 1.5 3.16 4 0.0 2.9 1.20 2.44 4 0.0 1.63 
Statistically 
Significant No Yes Yes No Yes No No Yes No No 

 

In this subsection it was shown that the fusion techniques have equal or greater 

classification accuracy over any of the individual classifiers. In addition to the statistical 

significance for certain image classes shown in Table 4.29, the fusion methods also show 

an increase in classification accuracy over any of the individual detection systems.  
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4.5 Summary 

 

In this chapter, the DCT decomposition feature generation, kernel feature ranking, 

decision tree for multi-class classification and the fusion techniques have shown 

improvements in classification accuracy when determining the stego algorithm used to 

create a stego image. Results comparing the feature generation methods described in 

Section 3.2 show that the new features are able to distinguish between Steganos and the 

other classes while the wavelet feature generation method (Lyu and Farid, 2002) and 

DCT feature generation (Pevny and Fridrich, 2006) have shown difficulty in identifying 

Steganos. It has also been shown that by combining all of the feature generation methods, 

detection improves. Additionally, by performing feature ranking, detection results for the 

SVM classifier are improved. The third area of improvement is the development of a 

multi-class tree that is used with two-class KFD and SVM classifiers. The tree in this 

case is expanded by using a distance measure in the kernel space. While the classification 

tree shows promise, the results can additionally be improved through the use of a fusion 

technique. The fusion techniques use the strengths of each individual multi-class 

detection systems to better predict the embedding method. The t-test was used in this 

chapter to determine if the methods used to improve the classification of individual 

steganography methods are statistically significant. While no individual system showed 

to be statistically significant over any of the others, it is important to note that the real 

utility of the methods in this research lies in using each and every available detection 

system to improve the identification of steganography methods. 
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V.  Conclusion and Recommendations 

 

This research demonstrated a steganalysis classification system that identifies the 

steganalysis embedding method in a given JPEG. The system includes feature 

preprocessing, feature extraction, feature ranking, classification and multi-class 

classification. The methodology, analyses and experimental results with system 

validation have been described and demonstrated in Chapters 3 and 4. The results show 

the statistical difference of the proposed classification system which is essential for such 

a system. This chapter summarizes the research conducted and also provides the 

advantage and disadvantage of this steganalysis classification system. Further research 

can be applied not only based on the constraints and limitations when developing the 

system but by its application to other areas.  

 

5.1 Application of Results 

 

This research proposes a novel multi-class detection system applied to the problem of 

steganalysis. The complete system is shown in Figure 5.1. With the input including the 

clean and stego image sets using the embedding methods either F5, JP Hide, JSteg, 

Model-base, Model-based Version 1.2, OutGuess, Steganos, StegHide or UTSA, features 

are generated from each image and each feature set is assigned a class label identifying 

the embedding method used. Three components, Multi-class Detection for EM/k-

NN/Parzen/PNN, Multi-class Detection for KFD/SVM, and Commercial Detection 

Systems are integrated as an 8 multi-class system. The components analyze the raw 

features and their results are fused in order to assign a final class label. 
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Figure 5.17. Detection system. 

 

The multiclass fusion system developed in this dissertation provides the steganalyst the 

ability to use all available tools from both the research community and the commercial 

industry to be combined in one detection system. For certain law enforcement agencies 

that use detection methods not available to outside agencies (i.e., ILook Investigator, 

Detica’s Inforenz Forager, SecureStego (AFRL) and WetStone’s Stego Suite with added 
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applications) the fusion method provides a means to incorporate the class labels of any 

tools necessary for identifying stego methods.   

 

As shown in Section 4.2, the classification accuracy for each feature generation method, 

Wavelet features, DCT features, and DCT decomposition features, with feature ranking is 

increased. Using SVM-kernel feature ranking, the wavelet feature generation method has 

an average increase of 7% in classification accuracy when feature ranking is not used. 

The DCT features show an increase in classification accuracy on Clean vs. MB and Clean 

vs. STN with 0.5% and 1.6% respectively when using SVM-kernel feature ranking. The 

DCT decomposition features have an average increase of 2.5% classification accuracy in 

comparison to not using feature ranking. Between the three feature generation methods 

shown in Table 4.14, while the DCT features are able to classify most of the stego 

methods accurately, the proposed DCT decomposition features has an increase in 

classification accuracy of 10% on Steganos (STN) over the DCT features. This allows the 

combination of features with feature ranking to separate the Clean vs. all the Stego image 

classes as shown in Table 4.14 with perfect classification accuracy. By creating a multi-

class classifier using the decision tree in Section 3.3 the proposed SVM with tree 

structure has an increase of classification accuracy of 2.3% over PNN as shown in Table 

4.23. Furthermore, with the use of fusion techniques, the overall classification accuracy 

of the best individual classifier increases from 85.5% to 89% (see Table 4.28). AdaBoost, 

Bayes, and PNN fusion obtain the classification accuracy of 89%, 89.7% and 89.9%, 

respectively. 

 

5.2 Recommendations for Future Work 

 

The need to extract the hidden information is necessary for law enforcement to build a 

criminal case if it is to hold up in court. This problem of extraction leads to an 

intermediate step of identifying the embedding method used to create the stego file. 

Another problem exist for the steganalyst in which several tools are available to detect 

whether an image is clean or stego. The multi-class classification system developed needs 
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to be expanded to identify more steganography algorithms. This expansion includes the 

ability to identify embedding techniques other than DCT coefficients, such as header 

analysis, and spatial embedding methods. Additionally, the techniques should be 

extended to classify JPEG images with different image sizes, quality factors, and camera 

types. Also, the difficulties are currently not well understood when it comes to images 

taken from entirely different scenes or computer generated.  

 

In header analysis, stego images created by methods such as F5 (Westfeld, 2001; 2003) 

and Invisible Secrets (2008) manipulate the header of an image in different ways. By 

analyzing the header of an image various embedding methods used to manipulate in 

headers can be identified. In both StegAlyzerSS and StegoWatch the default header for 

F5 was identified, however, for Invisible Secretes neither of these detectors is capable of 

identifying this method. The work by Pevny and Fridrich (2006) analyze various image 

sizes, quality factors and camera types and are supported by the Air Force Research 

Laboratory. Their research of these categories can be used in conjunction with the 

presented detection system to improve the identification of the embedding methods used.  

 

Another area of improving stego method identification is to separate images into different 

scenes, e.g., images of an aircraft with blue sky should not be in the same data set as 

images of an individual smiling. By separating images into the various categories the 

problems encountered in Section 4.4 with outliers can be avoided. The number of varying 

scenes is a research topic that has been extensively studied can be incorporated into the 

work provided in this document. 

 

5.3 Conclusion  

 

This dissertation proposes a novel multi-class classification system on steganalysis. This 

research of developing the steganalysis classification system has contribution in four 

advancements: feature generation, feature ranking, multi-class for kernel Fisher’s 

discriminant as well as support vector machines and fusion of detection systems. First, 
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the new features are generated from the frequency bands and directions of the Discrete 

Cosine Transform (DCT) coefficients of JPEG images. The second improvement is a new 

feature ranking method. From the original input feature set, it selects a subset of features 

specifically designed for the kernel Fisher’s discriminant (KFD) and the support vector 

machines (SVM). The third improvement is a multi-class classification tree designed for 

the KFD and SVM classifiers. The final contribution of this steganalysis classification 

system is a multi-class classifier fusion with classifier selection and fusion. The complete 

system performance shows an increase in classification accuracy of 10% as well as being 

statistically different from existing detection techniques. In addition, this system provides 

a solution for identifying steganographic fingerprints as well as the ability to include 

future multi-class classification tools. 

 

 



 

154 

Appendix A 

 

Table A1. Number of features used from each of the feature generation method in feature 
combination (Table 4.15 Detail for Clean vs. F5, Clean vs. JPH and Clean vs. JS). 
  Clean vs. F5 Clean vs. JPH Clean vs. JS 

Method 
↓ 

Total No. of 
Features → 11 18 5 

Wavelets 

No. of Features 1 3 0 
(Number of 
Features) 

Description of 
Feature: 
Statistic 

Calculated, 
Orientation, 

Subband Scale 
(level), 
either 

Wavelet 
Coefficients or 

Log Error 

(1) Variance, 
Horizontal, 1, Log 
Error 

(1) Mean, Diagonal, 1, 
Log Error 
(1) Variance, 
Horizontal, 1, Log 
Error 
(1) Kurtosis, Vertical, 
1, Log Error 

(0) 

DCT 

No. of Features 5 12 4 
(Number of 
Features) 

Description of 
Feature: 

either 
Global Histogram 

AC Histogram 
Dual Histogram 

Variation 
Blockiness 

Co-occurance 
Markov 

(1) AC Histogram 
(3) Dual Histogram 
(1) Markov  

(3) AC Histogram 
(3) Dual Histogram 
(5) Co- occurance 
(1) Markov 

(3) Co- occurance 
(1) Markov 

DCT 
Decomp 

No. of Features 5 3 1 
(Number of 
Features) 

Description of 
Feature: 
Statistic 

Calculated, 
Orientation, 
Frequency, 

either 
Regression 

Mean Difference 
Avg. Neighboring 

Shifted Right 
Shifted Down 

Shifted Diagonal 

(1) Variance, 
Diagonal, Low, 
Regression 
(1) Variance, 
Horizontal, Low, Avg. 
Neighboring 
(1) Variance, 
Horizontal, Low, 
Shifted Diagonal 
(1) Variance, Vertical, 
Low, Shifted Diagonal 
(1) Entropy, Vertical, 
Low, Shifted Diagonal 

(1) Variance, 
Diagonal, Low, 
Regression 
(1) Entropy, 
Horizontal, Low, Avg. 
Neighboring 
(1) Variance, Vertical, 
Low, Shifted 
Diagonal 

(1) Variance, 
Diagonal, Medium, 
Shifted Diagonal 
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Table A2. Number of features used from each of the feature generation method in feature 
combination (Table 4.15 Detail for Clean vs. MB, Clean vs. MB1.2 and Clean vs. OG).  

  Clean vs. MB Clean vs. MB1.2 Clean vs. OG 
Method 

↓ 
Total No. of 
Features → 6 10 5 

Wavelets 

No. of Features 0 0 0 
(Number of 
Features) 

Description of 
Feature: 
Statistic 

Calculated, 
Orientation, 

Subband Scale 
(level), 
either 

Wavelet 
Coefficients or 

Log Error 

(0) (0) (0) 

DCT 

No. of Features 5 5 4 
(Number of 
Features) 

Description of 
Feature: 
either 

Global Histogram 
AC Histogram 

Dual Histogram 
Variation 

Blockiness 
Co-occurance 

Markov 

(4) Co- occurance 
(1) Markov 

(2) Co- occurance 
(3) Markov 
 

(1) AC Histogram 
(3) Markov 
 

DCT 
Decomp 

No. of Features 1 5 1 
(Number of 
Features) 

Description of 
Feature: 
Statistic 

Calculated, 
Orientation, 
Frequency, 

either 
Regression 

Mean Difference 
Avg. Neighboring 

Shifted Right 
Shifted Down 

Shifted Diagonal 

(1) Variance, 
Diagonal, Low, 
Regression 

(1) Variance, Diagonal, 
Low, Regression 
(1) Variance, 
Horizontal, Low, Avg. 
Neighboring 
(1) Variance, Diagonal, 
Low, Mean Difference  
(1) Variance, Vertical, 
Low, Shifted Diagonal 
(1) Entropy, Vertical, 
Low, Shifted Diagonal 

(1) Mean, Vertical, 
Medium, 
Regression 
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Table A3. Number of features used from each of the feature generation method in feature 
combination (Table 4.15 Detail for Clean vs. STN, Clean vs. SH and Clean vs. UTSA).  

  Clean vs. STN Clean vs. SH Clean vs. 
UTSA 

Method 
↓ 

Total No. of 
Features → 15 7 5 

Wavelets 

No. of Features 2 0 0 
(Number of 
Features) 

Description of 
Feature: 
Statistic 

Calculated, 
Orientation, 

Subband Scale 
(level), 
either 

Wavelet 
Coefficients or Log 

Error 

(1) Variance,  
horizontal subband at scale 
1,  
log error 
(1) Mean, diagonal 
subband at scale 1 

(0) (0) 

DCT 

No. of Features 7 5 5 
(Number of 
Features) 

Description of 
Feature: 
either 

Global Histogram 
AC Histogram 

Dual Histogram 
Variation 

Blockiness 
Co-occurance 

Markov 

(1) Global histogram 
(1) AC histogram 
(3) Dual histogram 
(2) Co- occurance 

(4) Co-occurance 
(1) Markov 

 (4) Co-
occurance 
(1) Markov 

DCT 
Decomp 

No. of Features 6 2 0 
(Number of 
Features) 

Description of 
Feature: 
Statistic 

Calculated, 
Orientation, 
Frequency, 

either 
Regression 

Mean Difference 
Avg. Neighboring 

Shifted Right 
Shifted Down 

Shifted Diagonal 

(1) Variance, Diagonal, 
Low, Regression,  
(1) Variance, Horizontal, 
Low, Average 
Neighboring 
(1) Variance, Horizontal, 
Low, Shifted Diagonal 
(1) Variance, Vertical, 
Low, Shifted Diagonal 
 (1) Variance, Diagonal, 
Low, Mean Difference 
(1) Entropy, Vertical, Low, 
Shifted Diagonal 
 

(1) Variance, Horizontal, 
Low, Avg. Neighboring 
 (1) Variance, Vertical, 
Low, Shifted Diagonal 
 

(0) 
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